Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nonthermal electron-photon steady states in open cavity quantum materials (2312.17436v2)

Published 29 Dec 2023 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.stat-mech

Abstract: Coupling a system to two different baths can lead to novel phenomena escaping the constraints of thermal equilibrium. In quantum materials inside optical cavities, this feature can be exploited as electrons and cavity-photons are easily pulled away from their mutual equilibrium, even in the steady state. This offers new routes for a non-invasive control of material properties and functionalities. We show that the absence of thermal equilibrium between electrons and photons leads to reduced symmetries of the steady-state electronic distribution function. Moreover, by defining an effective temperature from the on-shell distribution function, we find a non-monotonic behaviour as a function of cavity frequency, consistent with recent experimental findings. Finally, we show that, the non-thermal behaviour leads to qualitative modifications of the material's properties, as the standard Sommerfeld expansion for observables is modified by a leading-order correction linearly proportional to the temperature difference between the two baths and to the frequency-derivative of the electron damping.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. J. J. Mackenbach, J. H. E. Proll, and P. Helander, Available energy of trapped electrons and its relation to turbulent transport, Phys. Rev. Lett. 128, 175001 (2022).
  2. S. Ryu and H.-S. Sim, Partition of two interacting electrons by a potential barrier, Phys. Rev. Lett. 129, 166801 (2022).
  3. D. Needleman and Z. Dogic, Active matter at the interface between materials science and cell biology, Nature Reviews Materials 2, 17048 (2017).
  4. G. Popkin, The physics of life, Nature 529, 16 (2016).
  5. G. Pacchioni, Molecular motors: You spin me round, Nature Reviews Materials 1, 16045 (2016).
  6. Y. Pomeau, The long and winding road, Nature Physics 12, 198 (2016).
  7. A. E. Siegman, Lasers (University science books, 1986).
  8. F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Manipulating matter by strong coupling to vacuum fields, Science 373,  (2021).
  9. F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum materials, Applied Physics Reviews 9,  (2022a).
  10. A. Chakraborty and F. Piazza, Long-range photon fluctuations enhance photon-mediated electron pairing and superconductivity, Phys. Rev. Lett. 127, 177002 (2021).
  11. A. Chakraborty and F. Piazza, Controlling collective phenomena by engineering the quantum state of force carriers: The case of photon-mediated superconductivity and its criticality, arXiv preprint 10.48550/arXiv.2207.07131 (2022).
  12. G. Chiriacò, Thermal purcell effect and cavity-induced renormalization of dissipations, arXiv preprint 10.48550/arXiv.2310.15184 (2023).
  13. G. Eliashberg, Film superconductivity stimulated by a high-frequency field., Tech. Rep. (Inst. of Theoretical Physics, Moscow, 1970).
  14. A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2023).
  15. L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field theory for driven open quantum systems, Reports on Progress in Physics 79, 096001 (2016).
  16. F. Schlawin, A. Cavalleri, and D. Jaksch, Cavity-mediated electron-photon superconductivity, Phys. Rev. Lett. 122, 133602 (2019).
  17. F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum materials, Applied Physics Reviews 9, 011312 (2022b).
  18. F. Piazza and P. Strack, Quantum kinetics of ultracold fermions coupled to an optical resonator, Physical Review A 90, 043823 (2014).
  19. P. Rao and F. Piazza, Non-fermi-liquid behavior from cavity electromagnetic vacuum fluctuations at the superradiant transition, Phys. Rev. Lett. 130, 083603 (2023).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.