Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Combinatorial optimization with quantum imaginary time evolution (2312.16664v1)

Published 27 Dec 2023 in quant-ph

Abstract: We use Quantum Imaginary Time Evolution (QITE) to solve polynomial unconstrained binary optimization (PUBO) problems. We show that a linear Ansatz yields good results for a wide range of PUBO problems, often outperforming standard classical methods, such as the Goemans-Williamson (GW) algorithm. We obtain numerical results for the Low Autocorrelation Binary Sequences (LABS) and weighted MaxCut combinatorial optimization problems, thus extending an earlier demonstration of successful application of QITE on MaxCut for unweighted graphs. We find the performance of QITE on the LABS problem with a separable Ansatz comparable with p=10 QAOA, and do not see a significant advantage with an entangling Ansatz. On weighted MaxCut, QITE with a separable Ansatz often outperforms the GW algorithm on graphs up to 150 vertices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)
  1. F. Barahona, Journal of physics. A, Mathematical and general 15, 3241 (1982).
  2. P. J. Love, Nature Physics 16, 130 (2020).
  3. C. Cao, Z. An, S.-Y. Hou, D. L. Zhou,  and B. Zeng, “Quantum imaginary time evolution steered by reinforcement learning,”  (2021), arXiv:2105.08696 [quant-ph] .
  4. C. Mathieu and W. Schudy, in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08 (Society for Industrial and Applied Mathematics, USA, 2008) p. 176–182.
  5. M. X. Goemans and D. P. Williamson, in Proceedings of the twenty-sixth annual ACM symposium on Theory of computing (1994) pp. 422–431.
  6. R. Shaydulin, C. Li, S. Chakrabarti, M. DeCross, D. Herman, N. Kumar, J. Larson, D. Lykov, P. Minssen, Y. Sun, Y. Alexeev, J. M. Dreiling, J. P. Gaebler, T. M. Gatterman, J. A. Gerber, K. Gilmore, D. Gresh, N. Hewitt, C. V. Horst, S. Hu, J. Johansen, M. Matheny, T. Mengle, M. Mills, S. A. Moses, B. Neyenhuis, P. Siegfried, R. Yalovetzky,  and M. Pistoia, “Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem,”  (2023), arXiv:2308.02342 [quant-ph] .
  7. B. Bošković, F. Brglez,  and J. Brest, “A GitHub Archive for Solvers and Solutions of the labs problem,” For updates, see https://github.com/borkob/git_labs. (2016).
  8. G. E. Crooks, arXiv e-prints , arXiv:1811.08419 (2018), arXiv:1811.08419 [quant-ph] .
  9. G. G. Guerreschi and A. Y. Matsuura, Scientific Reports 9 (2019), 10.1038/s41598-019-43176-9.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com