Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Method for Solving Four Types of SAT Problems (2312.16423v1)

Published 27 Dec 2023 in cs.AI and math.OC

Abstract: Existing methods provide varying algorithms for different types of Boolean satisfiability problems (SAT), lacking a general solution framework. Accordingly, this study proposes a unified framework DCSAT based on integer programming and reinforcement learning (RL) algorithm to solve different types of SAT problems such as MaxSAT, Weighted MaxSAT, PMS, WPMS. Specifically, we first construct a consolidated integer programming representation for four types of SAT problems by adjusting objective function coefficients. Secondly, we construct an appropriate reinforcement learning models based on the 0-1 integer programming for SAT problems. Based on the binary tree search structure, we apply the Monte Carlo tree search (MCTS) method on SAT problems. Finally, we prove that this method can find all optimal Boolean assignments based on Wiener-khinchin law of large Numbers. We experimentally verify that this paradigm can prune the unnecessary search space to find the optimal Boolean assignments for the problem. Furthermore, the proposed method can provide diverse labels for supervised learning methods for SAT problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:10.1145/3451179.
  2. doi:10.1007/978-3-030-16194-1_9.
  3. doi:10.1142/s1793830921500762.
  4. arXiv:2110.15105.
  5. doi:10.1016/j.engappai.2021.104422.
  6. doi:10.1016/j.ic.2023.105085.
  7. doi:10.1016/j.ic.2020.104609.
  8. doi:10.1016/0890-5401(91)90075-D.
  9. doi:10.1016/j.ic.2022.104954.
  10. doi:10.1016/j.ic.2020.104637.
  11. doi:https://doi.org/10.1016/j.ic.2022.104923.
  12. doi:10.1016/j.ic.2013.08.008.
  13. doi:10.1016/j.ic.2017.11.002.
  14. doi:10.1016/S0890-5401(03)00037-3.
  15. doi:10.48550/arXiv.1903.04671.
  16. doi:10.1609/aaai.v35i14.17474.
  17. doi:10.1109/DAC56929.2023.10248001.
  18. doi:10.1038/nature16961.
  19. doi:10.1038/nature24270.
  20. doi:10.1016/j.ic.2013.02.002.
  21. doi:10.1016/j.ic.2014.12.008.
  22. doi:https://doi.org/10.1016/j.cor.2021.105400.
  23. doi:https://doi.org/10.1016/j.cor.2021.105357.
  24. doi:https://doi.org/10.1016/j.cor.2022.105745.
  25. doi:10.1016/j.ins.2014.10.045.
  26. doi:10.1145/3477911.3477915.
  27. doi:10.1109/ACCESS.2020.3000236.
  28. doi:10.1016/j.eastsj.2020.100028.
  29. doi:10.1007/978-3-642-29178-4_26.
  30. doi:10.1007/978-3-030-20323-8_5.
  31. doi:10.1007/978-3-319-44953-1_17.
  32. doi:10.1038/s42256-022-00446-y.
  33. doi:10.1007/11871842_29.
Citations (1)

Summary

We haven't generated a summary for this paper yet.