Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving MaxSAT by Successive Calls to a SAT Solver (1603.03814v1)

Published 11 Mar 2016 in cs.AI, cs.CC, and cs.LO

Abstract: The Maximum Satisfiability (MaxSAT) problem is the problem of finding a truth assignment that maximizes the number of satisfied clauses of a given Boolean formula in Conjunctive Normal Form (CNF). Many exact solvers for MaxSAT have been developed during recent years, and many of them were presented in the well-known SAT conference. Algorithms for MaxSAT generally fall into two categories: (1) branch and bound algorithms and (2) algorithms that use successive calls to a SAT solver (SAT- based), which this paper in on. In practical problems, SAT-based algorithms have been shown to be more efficient. This paper provides an experimental investigation to compare the performance of recent SAT-based and branch and bound algorithms on the benchmarks of the MaxSAT Evaluations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.