Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis of Pleiotropy for Testosterone and Lipid Profiles in Males and Females (2312.16241v2)

Published 25 Dec 2023 in stat.ME and stat.AP

Abstract: In modern scientific studies, it is often imperative to determine whether a set of phenotypes is affected by a single factor. If such an influence is identified, it becomes essential to discern whether this effect is contingent upon categories such as sex or age group, and importantly, to understand whether this dependence is rooted in purely non-environmental reasons. The exploration of such dependencies often involves studying pleiotropy, a phenomenon wherein a single genetic locus impacts multiple traits. This heightened interest in uncovering dependencies by pleiotropy is fueled by the growing accessibility of summary statistics from genome-wide association studies (GWAS) and the establishment of thoroughly phenotyped sample collections. This advancement enables a systematic and comprehensive exploration of the genetic connections among various traits and diseases. additive genetic correlation illuminates the genetic connection between two traits, providing valuable insights into the shared biological pathways and underlying causal relationships between them. In this paper, we present a novel method to analyze such dependencies by studying additive genetic correlations between pairs of traits under consideration. Subsequently, we employ matrix comparison techniques to discern and elucidate sex-specific or age-group-specific associations, contributing to a deeper understanding of the nuanced dependencies within the studied traits. Our proposed method is computationally handy and requires only GWAS summary statistics. We validate our method by applying it to the UK Biobank data and present the results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.