Deciding the Feasibility and Minimizing the Height of Tangles (2312.16213v1)
Abstract: We study the following combinatorial problem. Given a set of $n$ y-monotone \emph{wires}, a \emph{tangle} determines the order of the wires on a number of horizontal \emph{layers} such that the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset~$L$ of \emph{swaps} (that is, unordered pairs of wires) and an initial order of the wires, a tangle \emph{realizes}~$L$ if each pair of wires changes its order exactly as many times as specified by~$L$. \textsc{List-Feasibility} is the problem of finding a tangle that realizes a given list~$L$ if such a tangle exists. \textsc{Tangle-Height Minimization} is the problem of finding a tangle that realizes a given list and additionally uses the minimum number of layers. \textsc{List-Feasibility} (and therefore \textsc{Tangle-Height Minimization}) is NP-hard [Yamanaka, Horiyama, Uno, Wasa; CCCG 2018]. We prove that \textsc{List-Feasibility} remains NP-hard if every pair of wires swaps only a constant number of times. On the positive side, we present an algorithm for \textsc{Tangle-Height Minimization} that computes an optimal tangle for $n$ wires and a given list~$L$ of swaps in $O((2|L|/n2+1){n2/2} \cdot \varphin \cdot n)$ time, where $\varphi \approx 1.618$ is the golden ratio and $|L|$ is the total number of swaps in~$L$. From this algorithm, we derive a simpler and faster version to solve \textsc{List-Feasibility}. We also use the algorithm to show that \textsc{List-Feasibility} is in NP and fixed-parameter tractable with respect to the number of wires. For \emph{simple} lists, where every swap occurs at most once, we show how to solve \textsc{Tangle-Height Minimization} in $O(n!\varphin)$ time.
- Vasil Alistarov. Computing tangles using a SAT solver. Student report, 2022. Code available on github: https://github.com/alistairv/tangles-with-sat. URL: https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2022-alistarov-masterpraktikum.pdf.
- Jakob Baumann. Height minimization of simple tangles. Bachelor’s thesis, September 2020. In German. URL: https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/2020-Jakob_Baumann-BA.pdf.
- Representing permutations with few moves. SIAM J. Discrete Math., 30(4):1950–1977, 2016. URL: https://arxiv.org/abs/1508.03674, doi:10.1137/15M1036105.
- Drawing permutations with few corners. In Stephen Wismath and Alexander Wolff, editors, Proc. Int. Symp. Graph Drawing (GD’13), volume 8242 of LNCS, pages 484–495. Springer, 2013. URL: http://arxiv.org/abs/1306.4048, doi:10.1007/978-3-319-03841-4_42.
- Knotted periodic orbits in dynamical systems—I: Lorenz’s equation. Topology, 22(1):47–82, 1983. doi:10.1016/0040-9383(83)90045-9.
- Chaos. Scientific American, 254(12):46–57, 1986. doi:10.1038/scientificamerican1286-46.
- The complexity of finding tangles. In Leszek Gąsieniec, editor, Proc. 49th Int. Conf. Current Trends Theory & Practice Comput. Sci. (SOFSEM’23), volume 13878 of LNCS, pages 3–17. Springer, 2023. doi:10.1007/978-3-031-23101-8_1.
- Computing optimal-height tangles faster. In Daniel Archambault and Csaba D. Tóth, editors, Proc. 27th Int. Symp. Graph Drawing & Network Vis. (GD’19), volume 11904 of LNCS, pages 203–215. Springer, 2019. URL: http://arxiv.org/abs/1901.06548, doi:10.1007/978-3-030-35802-0_16.
- Tosio Hiraguchi. On the dimension of orders. The Science Reports of the Kanazawa University, 4(1):1–20, 1955. doi:10.24517/00011473.
- Stuart A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, 1993.
- Java and Python code for computing tangles. Github repository, 2022. URL: https://github.com/PhKindermann/chaotic-attractors.
- Donald Ervin Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 2nd edition, 1998. URL: https://www.worldcat.org/oclc/312994415.
- Classification of strange attractors by integers. Phys. Rev. Lett., 64:2350–2353, 1990. doi:10.1103/PhysRevLett.64.2350.
- Visualizing the template of a chaotic attractor. In Therese Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing & Network Vis. (GD’18), volume 11282 of LNCS, pages 106–119. Springer, 2018. URL: https://arxiv.org/abs/1807.11853, doi:10.1007/978-3-030-04414-5_8.
- A function for evaluating the computing time of a bubbling system. Theor. Comput. Sci., 54:315–324, 1987. doi:10.1016/0304-3975(87)90136-8.
- Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annu. ACM Symp. Theory Comput. (STOC’78), pages 216–226, 1978. doi:10.1145/800133.804350.
- Ian Stewart. Does God Play Dice? The New Mathematics of Chaos. Wiley-Blackwell, 2nd edition, 2002.
- Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452, 1941. In Hungarian.
- Deborah C. Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. In Proc. 28th ACM/IEEE Design Automation Conf. (DAC’91), pages 49–53, 1991. doi:10.1145/127601.127626.
- Ladder-lottery realization. In Proc. 30th Canad. Conf. Comput. Geom. (CCCG’18), pages 61–67, 2018. URL: http://www.cs.umanitoba.ca/~cccg2018/papers/session2A-p3.pdf.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.