Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deciding the Feasibility and Minimizing the Height of Tangles (2312.16213v1)

Published 23 Dec 2023 in cs.CG, cs.DM, and cs.DS

Abstract: We study the following combinatorial problem. Given a set of $n$ y-monotone \emph{wires}, a \emph{tangle} determines the order of the wires on a number of horizontal \emph{layers} such that the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset~$L$ of \emph{swaps} (that is, unordered pairs of wires) and an initial order of the wires, a tangle \emph{realizes}~$L$ if each pair of wires changes its order exactly as many times as specified by~$L$. \textsc{List-Feasibility} is the problem of finding a tangle that realizes a given list~$L$ if such a tangle exists. \textsc{Tangle-Height Minimization} is the problem of finding a tangle that realizes a given list and additionally uses the minimum number of layers. \textsc{List-Feasibility} (and therefore \textsc{Tangle-Height Minimization}) is NP-hard [Yamanaka, Horiyama, Uno, Wasa; CCCG 2018]. We prove that \textsc{List-Feasibility} remains NP-hard if every pair of wires swaps only a constant number of times. On the positive side, we present an algorithm for \textsc{Tangle-Height Minimization} that computes an optimal tangle for $n$ wires and a given list~$L$ of swaps in $O((2|L|/n2+1){n2/2} \cdot \varphin \cdot n)$ time, where $\varphi \approx 1.618$ is the golden ratio and $|L|$ is the total number of swaps in~$L$. From this algorithm, we derive a simpler and faster version to solve \textsc{List-Feasibility}. We also use the algorithm to show that \textsc{List-Feasibility} is in NP and fixed-parameter tractable with respect to the number of wires. For \emph{simple} lists, where every swap occurs at most once, we show how to solve \textsc{Tangle-Height Minimization} in $O(n!\varphin)$ time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Vasil Alistarov. Computing tangles using a SAT solver. Student report, 2022. Code available on github: https://github.com/alistairv/tangles-with-sat. URL: https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2022-alistarov-masterpraktikum.pdf.
  2. Jakob Baumann. Height minimization of simple tangles. Bachelor’s thesis, September 2020. In German. URL: https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/2020-Jakob_Baumann-BA.pdf.
  3. Representing permutations with few moves. SIAM J. Discrete Math., 30(4):1950–1977, 2016. URL: https://arxiv.org/abs/1508.03674, doi:10.1137/15M1036105.
  4. Drawing permutations with few corners. In Stephen Wismath and Alexander Wolff, editors, Proc. Int. Symp. Graph Drawing (GD’13), volume 8242 of LNCS, pages 484–495. Springer, 2013. URL: http://arxiv.org/abs/1306.4048, doi:10.1007/978-3-319-03841-4_42.
  5. Knotted periodic orbits in dynamical systems—I: Lorenz’s equation. Topology, 22(1):47–82, 1983. doi:10.1016/0040-9383(83)90045-9.
  6. Chaos. Scientific American, 254(12):46–57, 1986. doi:10.1038/scientificamerican1286-46.
  7. The complexity of finding tangles. In Leszek Gąsieniec, editor, Proc. 49th Int. Conf. Current Trends Theory & Practice Comput. Sci. (SOFSEM’23), volume 13878 of LNCS, pages 3–17. Springer, 2023. doi:10.1007/978-3-031-23101-8_1.
  8. Computing optimal-height tangles faster. In Daniel Archambault and Csaba D. Tóth, editors, Proc. 27th Int. Symp. Graph Drawing & Network Vis. (GD’19), volume 11904 of LNCS, pages 203–215. Springer, 2019. URL: http://arxiv.org/abs/1901.06548, doi:10.1007/978-3-030-35802-0_16.
  9. Tosio Hiraguchi. On the dimension of orders. The Science Reports of the Kanazawa University, 4(1):1–20, 1955. doi:10.24517/00011473.
  10. Stuart A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, 1993.
  11. Java and Python code for computing tangles. Github repository, 2022. URL: https://github.com/PhKindermann/chaotic-attractors.
  12. Donald Ervin Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 2nd edition, 1998. URL: https://www.worldcat.org/oclc/312994415.
  13. Classification of strange attractors by integers. Phys. Rev. Lett., 64:2350–2353, 1990. doi:10.1103/PhysRevLett.64.2350.
  14. Visualizing the template of a chaotic attractor. In Therese Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing & Network Vis. (GD’18), volume 11282 of LNCS, pages 106–119. Springer, 2018. URL: https://arxiv.org/abs/1807.11853, doi:10.1007/978-3-030-04414-5_8.
  15. A function for evaluating the computing time of a bubbling system. Theor. Comput. Sci., 54:315–324, 1987. doi:10.1016/0304-3975(87)90136-8.
  16. Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annu. ACM Symp. Theory Comput. (STOC’78), pages 216–226, 1978. doi:10.1145/800133.804350.
  17. Ian Stewart. Does God Play Dice? The New Mathematics of Chaos. Wiley-Blackwell, 2nd edition, 2002.
  18. Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452, 1941. In Hungarian.
  19. Deborah C. Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. In Proc. 28th ACM/IEEE Design Automation Conf. (DAC’91), pages 49–53, 1991. doi:10.1145/127601.127626.
  20. Ladder-lottery realization. In Proc. 30th Canad. Conf. Comput. Geom. (CCCG’18), pages 61–67, 2018. URL: http://www.cs.umanitoba.ca/~cccg2018/papers/session2A-p3.pdf.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.