On two-dimensional minimal linear codes over the rings $\mathbb{Z}_{p^n}$ (2312.15954v2)
Abstract: In this paper we study two dimensional minimal linear code over the ring $\mathbb{Z}{pn}$(where $p$ is prime). We show that if the generator matrix $G$ of the two dimensional linear code $M$ contains $pn+p{n-1}$ column vector of the following type {\scriptsize{$u{l_1}\begin{pmatrix} 1\ 0 \end{pmatrix}$, $u_{l_2}\begin{pmatrix} 0\1 \end{pmatrix}$, $u_{l_3}\begin{pmatrix} 1\u_1 \end{pmatrix}$, $u_{l_4}\begin{pmatrix} 1\u_2 \end{pmatrix}$,...,$u_{l_{pn-p{n-1}+2}} \begin{pmatrix} 1\u_{pn-p{n-1}} \end{pmatrix}$, $u_{l_{pn-p{n-1}+3}}\begin{pmatrix} d_1 \ 1 \end{pmatrix}$, $u_{l_{pn-p{n-1}+4}}\begin{pmatrix} d_2\ 1 \end{pmatrix}$,..., $u_{l_{pn+1}}\begin{pmatrix} d_{p{n-1}-1}\1 \end{pmatrix}$, $u_{l_{pn+2}}\begin{pmatrix} 1\d_1 \end{pmatrix}$, $u_{l_{pn+3}}\begin{pmatrix} 1\d_2 \end{pmatrix}$,...,$u_{l_{pn+p{n-1}}}\begin{pmatrix} 1 \d_{p{n-1}-1} \end{pmatrix}$}}, where $u_i$ and $d_j$ are distinct units and zero divisors respectively in the ring $\mathbb{Z}{pn}$ for $1\leq i \leq pn+p{n-1}$, $1\leq j \leq p{n-1}-1$ and additionally, denote $u{l_i}$ as units in $\mathbb{Z}_{pn}$, then the module generated by $G$ is a minimal linear code. Also we show that if any one column vector of the above types are not present entirely in $G$, then the generated module is not a minimal linear code.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.