Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On two-dimensional minimal linear codes over the rings $\mathbb{Z}_{p^n}$ (2312.15954v2)

Published 26 Dec 2023 in cs.IT, math.AC, and math.IT

Abstract: In this paper we study two dimensional minimal linear code over the ring $\mathbb{Z}{pn}$(where $p$ is prime). We show that if the generator matrix $G$ of the two dimensional linear code $M$ contains $pn+p{n-1}$ column vector of the following type {\scriptsize{$u{l_1}\begin{pmatrix} 1\ 0 \end{pmatrix}$, $u_{l_2}\begin{pmatrix} 0\1 \end{pmatrix}$, $u_{l_3}\begin{pmatrix} 1\u_1 \end{pmatrix}$, $u_{l_4}\begin{pmatrix} 1\u_2 \end{pmatrix}$,...,$u_{l_{pn-p{n-1}+2}} \begin{pmatrix} 1\u_{pn-p{n-1}} \end{pmatrix}$, $u_{l_{pn-p{n-1}+3}}\begin{pmatrix} d_1 \ 1 \end{pmatrix}$, $u_{l_{pn-p{n-1}+4}}\begin{pmatrix} d_2\ 1 \end{pmatrix}$,..., $u_{l_{pn+1}}\begin{pmatrix} d_{p{n-1}-1}\1 \end{pmatrix}$, $u_{l_{pn+2}}\begin{pmatrix} 1\d_1 \end{pmatrix}$, $u_{l_{pn+3}}\begin{pmatrix} 1\d_2 \end{pmatrix}$,...,$u_{l_{pn+p{n-1}}}\begin{pmatrix} 1 \d_{p{n-1}-1} \end{pmatrix}$}}, where $u_i$ and $d_j$ are distinct units and zero divisors respectively in the ring $\mathbb{Z}{pn}$ for $1\leq i \leq pn+p{n-1}$, $1\leq j \leq p{n-1}-1$ and additionally, denote $u{l_i}$ as units in $\mathbb{Z}_{pn}$, then the module generated by $G$ is a minimal linear code. Also we show that if any one column vector of the above types are not present entirely in $G$, then the generated module is not a minimal linear code.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.