Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

$β$ symmetry in type II Supergravities (2312.15061v3)

Published 22 Dec 2023 in hep-th

Abstract: A non geometric sector of the duality group emerging in Kaluza-Klein reductions is realized as an effective symmetry in the low energy action of uncompactified type II theories. This is achieved by extending the so called $\beta$ symmetry of the universal NS-NS sector to the R-R sector of type IIA, IIB and massive type IIA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. K. A. Meissner and G. Veneziano, “Symmetries of cosmological superstring vacua,” Phys. Lett. B 267 (1991), 33-36 K. A. Meissner and G. Veneziano, “Manifestly O(d,d) invariant approach to space-time dependent string vacua,” Mod. Phys. Lett. A 6 (1991), 3397-3404
  2. J. Maharana and J. H. Schwarz, “Noncompact symmetries in string theory,” Nucl. Phys. B 390 (1993), 3-32 [arXiv:hep-th/9207016 [hep-th]].
  3. A. Sen, “O(d) x O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes,” Phys. Lett. B 271 (1991), 295-300
  4. K. A. Meissner, “Symmetries of higher order string gravity actions,” Phys. Lett. B 392 (1997), 298-304 [arXiv:hep-th/9610131 [hep-th]].
  5. W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47 (1993), 5453-5459 [arXiv:hep-th/9302036 [hep-th]]. C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 09 (2009), 099 [arXiv:0904.4664 [hep-th]].
  6. G. Aldazabal, W. Baron, D. Marques and C. Nunez, “The effective action of Double Field Theory,” JHEP 11 (2011), 052 [arXiv:1109.0290 [hep-th]]. D. Geissbuhler, “Double Field Theory and N=4 Gauged Supergravity,” JHEP 11 (2011), 116 [arXiv:1109.4280 [hep-th]].
  7. W. H. Baron, E. Lescano and D. Marqués, “The generalized Bergshoeff-de Roo identification,” JHEP 11 (2018), 160 [arXiv:1810.01427 [hep-th]]. W. Baron and D. Marques, “The generalized Bergshoeff-de Roo identification. Part II,” JHEP 01 (2021), 171 [arXiv:2009.07291 [hep-th]]. E. Lescano, C. A. Núñez and J. A. Rodríguez, “Supersymmetry, T-duality and heterotic α𝛼\alphaitalic_α’-corrections,” JHEP 07 (2021), 092 [arXiv:2104.09545 [hep-th]]. W. H. Baron, “Duality covariant field redefinitions,” Phys. Rev. D 105 (2022) no.10, 106015 [arXiv:2201.00030 [hep-th]]. E. Lescano and N. Mirón-Granese, “Double field theory with matter and the generalized Bergshoeff–de Roo identification,” Phys. Rev. D 107 (2023) no.8, 086008 [arXiv:2207.04041 [hep-th]].
  8. D. Marques and C. A. Nunez, “T-duality and α𝛼\alphaitalic_α’-corrections,” JHEP 10 (2015), 084 [arXiv:1507.00652 [hep-th]].
  9. S. Hronek and L. Wulff, “String theory at order α𝛼\alphaitalic_α’22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT and the generalized Bergshoeff-de Roo identification,” JHEP 11 (2021), 186 [arXiv:2109.12200 [hep-th]].
  10. S. Hronek and L. Wulff, “O⁢(D,D)𝑂𝐷𝐷O(D,D)italic_O ( italic_D , italic_D ) and the string α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT expansion: an obstruction,” JHEP 04 (2021), 013 [arXiv:2012.13410 [hep-th]].
  11. W. H. Baron, D. Marques and C. A. Nunez, “β𝛽\betaitalic_β Symmetry of Supergravity,” Phys. Rev. Lett. 130 (2023) no.6, 061601 [arXiv:2209.02079 [hep-th]].
  12. W. H. Baron, D. Marques and C. A. Nunez, “Exploring the β𝛽\betaitalic_β symmetry of supergravity,” [arXiv:2307.02537 [hep-th]].
  13. M. R. Garousi, “Effective action of bosonic string theory at order α′⁣2superscript𝛼′2\alpha^{\prime 2}italic_α start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT,” Eur. Phys. J. C 79 (2019) no.10, 827 [arXiv:1907.06500 [hep-th]]. M. R. Garousi, “Effective action of type II superstring theories at order α′⁣3superscript𝛼′3\alpha^{\prime 3}italic_α start_POSTSUPERSCRIPT ′ 3 end_POSTSUPERSCRIPT: NS-NS couplings,” JHEP 02 (2021), 157 [arXiv:2011.02753 [hep-th]]. M. R. Garousi, “Effective action of heterotic string theory at order α𝛼\alphaitalic_α’22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT,” JHEP 09 (2023), 020 [arXiv:2307.00544 [hep-th]].
  14. D. Andriot, O. Hohm, M. Larfors, D. Lust and P. Patalong, “A geometric action for non-geometric fluxes,” Phys. Rev. Lett. 108 (2012), 261602 [arXiv:1202.3060 [hep-th]].
  15. D. Andriot and A. Betz, “β𝛽\betaitalic_β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework,” JHEP 12 (2013), 083 [arXiv:1306.4381 [hep-th]].
  16. D. Andriot and A. Betz, “NS-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes,” JHEP 07 (2014), 059 [arXiv:1402.5972 [hep-th]].
  17. J. i. Sakamoto, Y. Sakatani and K. Yoshida, “Homogeneous Yang-Baxter deformations as generalized diffeomorphisms,” J. Phys. A 50 (2017) no.41, 415401 [arXiv:1705.07116 [hep-th]]. J. J. Fernandez-Melgarejo, J. i. Sakamoto, Y. Sakatani and K. Yoshida, “T𝑇Titalic_T-folds from Yang-Baxter deformations,” JHEP 12 (2017), 108 [arXiv:1710.06849 [hep-th]].
  18. I. Bakhmatov and E. T. Musaev, “Classical Yang-Baxter equation from β𝛽\betaitalic_β-supergravity,” JHEP 01 (2019), 140 [arXiv:1811.09056 [hep-th]].
  19. I. Bakhmatov, Ö. Kelekci, E. Ó Colgáin and M. M. Sheikh-Jabbari, “Classical Yang-Baxter Equation from Supergravity,” Phys. Rev. D 98 (2018) no.2, 021901 [arXiv:1710.06784 [hep-th]]. I. Bakhmatov, E. Ó Colgáin, M. M. Sheikh-Jabbari and H. Yavartanoo, “Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT),” JHEP 06 (2018), 161 [arXiv:1803.07498 [hep-th]].
  20. F. Hassler, “Poisson-Lie T-duality in Double Field Theory,” Phys. Lett. B 807 (2020), 135455 [arXiv:1707.08624 [hep-th]]. S. Demulder, F. Hassler and D. C. Thompson, “Doubled aspects of generalised dualities and integrable deformations,” JHEP 02 (2019), 189 [arXiv:1810.11446 [hep-th]]. Y. Sakatani, “Type II DFT solutions from Poisson-Lie T-duality/plurality,” PTEP (2019) 073B04 [arXiv:1903.12175 [hep-th]].
  21. Y. Hyakutake and K. Maeyama, “Reconstruction of Type II Supergravities via O⁢(d)×O⁢(d)𝑂𝑑𝑂𝑑O(d)\times O(d)italic_O ( italic_d ) × italic_O ( italic_d ) Duality Invariants,” [arXiv:2311.04660 [hep-th]].
  22. E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, “New formulations of D = 10 supersymmetry and D8 - O8 domain walls,” Class. Quant. Grav. 18 (2001), 3359-3382 [arXiv:hep-th/0103233 [hep-th]].
  23. M. Fukuma, T. Oota and H. Tanaka, “Comments on T dualities of Ramond-Ramond potentials on tori,” Prog. Theor. Phys. 103 (2000), 425-446 [arXiv:hep-th/9907132 [hep-th]].
  24. O. Hohm, S. K. Kwak and B. Zwiebach, “Unification of Type II Strings and T-duality,” Phys. Rev. Lett. 107 (2011), 171603 [arXiv:1106.5452 [hep-th]]. O. Hohm, S. K. Kwak and B. Zwiebach, “Double Field Theory of Type II Strings,” JHEP 09 (2011), 013 [arXiv:1107.0008 [hep-th]]. I. Jeon, K. Lee and J. H. Park, “Ramond-Ramond Cohomology and O(D,D) T-duality,” JHEP 09 (2012), 079 [arXiv:1206.3478 [hep-th]]. I. Jeon, K. Lee, J. H. Park and Y. Suh, “Stringy Unification of Type IIA and IIB Supergravities under N=2 D=10 Supersymmetric Double Field Theory,” Phys. Lett. B 723 (2013), 245-250 [arXiv:1210.5078 [hep-th]].
  25. O. Hohm and S. K. Kwak, “Massive Type II in Double Field Theory,” JHEP 11 (2011), 086 [arXiv:1108.4937 [hep-th]].
  26. A. Catal-Ozer, “Massive deformations of Type IIA theory within double field theory,” JHEP 02 (2018), 179 [arXiv:1706.08883 [hep-th]].
  27. J. Polchinski, “String Theory,” vol. 2. Cambridge University Press (1998).
  28. I. V. Lavrinenko, H. Lu, C. N. Pope and K. S. Stelle, “Superdualities, brane tensions and massive IIA / IIB duality,” Nucl. Phys. B 555 (1999), 201-227 [arXiv:hep-th/9903057 [hep-th]].
  29. M. Grana, R. Minasian, M. Petrini and D. Waldram, “T-duality, Generalized Geometry and Non-Geometric Backgrounds,” JHEP 04 (2009), 075 [arXiv:0807.4527 [hep-th]]. A. Coimbra, C. Strickland-Constable and D. Waldram, “Supergravity as Generalised Geometry I: Type II Theories,” JHEP 11 (2011), 091 [arXiv:1107.1733 [hep-th]]. D. Andriot and A. Betz, “Supersymmetry with non-geometric fluxes, or a β𝛽\betaitalic_β-twist in Generalized Geometry and Dirac operator,” JHEP 04 (2015), 006 [arXiv:1411.6640 [hep-th]].
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.