Topological Green's function zeros in an exactly solved model and beyond (2312.14926v1)
Abstract: The interplay of topological electronic band structures and strong interparticle interactions provides a promising path towards the constructive design of robust, long-range entangled many-body systems. As a prototype for such systems, we here study an exactly integrable, local model for a fractionalized topological insulator. Using a controlled perturbation theory about this limit, we demonstrate the existence of topological bands of zeros in the exact fermionic Green's function and show that {in this model} they do affect the topological invariant of the system, but not the quantized transport response. Close to (but prior to) the Higgs transition signaling the breakdown of fractionalization, the topological bands of zeros acquire a finite ``lifetime''. We also discuss the appearance of edge states and edge zeros at real space domain walls separating different phases of the system. This model provides a fertile ground for controlled studies of the phenomenology of Green's function zeros and the underlying exactly solvable lattice gauge theory illustrates the synergetic cross-pollination between solid-state theory, high-energy physics and quantum information science.
- A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Books on Physics (Dover Publications, 2012).
- I. Dzyaloshinskii, Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators, Phys. Rev. B 68, 085113 (2003).
- S. Sakai, M. Civelli, and M. Imada, Hidden fermionic excitation boosting high-temperature superconductivity in cuprates, Phys. Rev. Lett. 116, 057003 (2016).
- S. Gazit, F. F. Assaad, and S. Sachdev, Fermi surface reconstruction without symmetry breaking, Physical Review X 10, 041057 (2020).
- E. J. König, P. Coleman, and A. M. Tsvelik, Soluble limit and criticality of fermions in z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT gauge theories, Phys. Rev. B 102, 155143 (2020).
- M. Fabrizio, Emergent quasiparticles at luttinger surfaces, Nature communications 13, 1561 (2022).
- M. Fabrizio, Spin-liquid insulators can be landau’s fermi liquids, Phys. Rev. Lett. 130, 156702 (2023).
- K. Vasiliou, Y. He, and N. Bultinck, Electrons interacting with goldstone modes and the rotating frame, arxiv:2307.05699 (2023).
- V. Gurarie, Single-particle green’s functions and interacting topological insulators, Phys. Rev. B 83, 085426 (2011).
- Y. Hatsugai and M. Kohmoto, Exactly solvable model of correlated lattice electrons in any dimensions, Journal of the Physical Society of Japan 61, 2056 (1992).
- P. W. Phillips, C. Setty, and S. Zhang, Absence of a charge diffusion pole at finite energies in an exactly solvable interacting flat-band model in d dimensions, Physical Review B 97, 195102 (2018).
- C. Setty, Superconductivity from luttinger surfaces: Emergent sachdev-ye-kitaev physics with infinite-body interactions, Physical Review B 103, 014501 (2021a).
- C. Setty, Dilute magnetic moments in an exactly solvable interacting host, arXiv preprint arXiv:2105.15205 (2021b).
- P. W. Phillips, L. Yeo, and E. W. Huang, Exact theory for superconductivity in a doped mott insulator, Nature Physics 16, 1175 (2020).
- R. Nandkishore, M. A. Metlitski, and T. Senthil, Orthogonal metals: The simplest non-fermi liquids, Phys. Rev. B 86, 045128 (2012).
- Y. Zhong, Y.-F. Wang, and H.-G. Luo, Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT fractionalized chern/topological insulators in an exactly soluble correlated model, Phys. Rev. B 88, 045109 (2013).
- J. Maciejko and A. Rüegg, Topological order in a correlated chern insulator, Phys. Rev. B 88, 241101 (2013).
- S. Gazit, M. Randeria, and A. Vishwanath, Emergent dirac fermions and broken symmetries in confined and deconfined phases of Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT gauge theories, Nature Physics 13, 484 (2017).
- K. Roy and E. J. König, ZN𝑁{}_{N}start_FLOATSUBSCRIPT italic_N end_FLOATSUBSCRIPT lattice gauge theories with matter fields, arxiv:2308.13083 (2023).
- M. Golterman and Y. Shamir, Propagator zeros and lattice chiral gauge theories, arxiv:2311.12790 (2023).
- K. Ishikawa and T. Matsuyama, Magnetic field induced multi-component QED 3 and quantum hall effect, Zeitschrift für Physik C Particles and Fields 33, 41 (1986).
- G. Volovik and V. M. Yakovenko, Fractional charge, spin and statistics of solitons in superfluid 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe film, Journal of Physics: Condensed Matter 1, 5263 (1989).
- G. E. Volovik, The universe in a helium droplet, Vol. 117 (OUP Oxford, 2003).
- A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their respective green’s functions, Phys. Rev. B 84, 125132 (2011).
- A. Blason and M. Fabrizio, Unified role of green’s function poles and zeros in correlated topological insulators, Phys. Rev. B 108, 125115 (2023).
- L. Peralta Gavensky, S. Sachdev, and N. Goldman, Connecting the many-body chern number to luttinger’s theorem through Streda’s Formula, Phys. Rev. Lett. 131, 236601 (2023).
- K. Slagle, Y.-Z. You, and C. Xu, Exotic quantum phase transitions of strongly interacting topological insulators, Phys. Rev. B 91, 115121 (2015).
- J. Wang and Y.-Z. You, Symmetric mass generation, Symmetry 14, 1475 (2022).
- F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
- L. de’Medici, A. Georges, and S. Biermann, Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory, Phys. Rev. B 72, 205124 (2005).
- A. Rüegg, S. D. Huber, and M. Sigrist, Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-slave-spin theory for strongly correlated Fermions, Phys. Rev. B 81, 155118 (2010).
- See supplementary information for detailed calculations.
- A. Levanyuk, Contribution to the theory of light scattering near the second-order phase-transition points, Sov. Phys. JETP 9, 571 (1959).
- V. Ginzburg, Some remarks on second order phase transitions and microscopic theory of ferroelectrics, Fiz. Tverd. Tela 2, 2031 (1960).
- M. Hohenadler and F. F. Assaad, Fractionalized metal in a falicov-kimball model, Phys. Rev. Lett. 121, 086601 (2018).
- A. Widom, Thermodynamic derivation of the hall effect current, Physics Letters A 90, 474 (1982).
- P. Streda, Theory of quantised hall conductivity in two dimensions, Journal of Physics C: Solid State Physics 15, L717 (1982).
- A. Stern, Fractional topological insulators: A pedagogical review, Annual Review of Condensed Matter Physics 7, 349 (2016).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.