Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MetaAID 2.5: A Secure Framework for Developing Metaverse Applications via Large Language Models (2312.14480v1)

Published 22 Dec 2023 in cs.CR, cs.CL, and cs.CY

Abstract: LLMs are increasingly being used in Metaverse environments to generate dynamic and realistic content and to control the behavior of non-player characters (NPCs). However, the cybersecurity concerns associated with LLMs have become increasingly prominent. Previous research has primarily focused on patching system vulnerabilities to enhance cybersecurity, but these approaches are not well-suited to the Metaverse, where the virtual space is more complex, LLMs are vulnerable, and ethical user interaction is critical. Moreover, the scope of cybersecurity in the Metaverse is expected to expand significantly. This paper proposes a method for enhancing cybersecurity through the simulation of user interaction with LLMs. Our goal is to educate users and strengthen their defense capabilities through exposure to a comprehensive simulation system. This system includes extensive Metaverse cybersecurity Q&A and attack simulation scenarios. By engaging with these, users will improve their ability to recognize and withstand risks. Additionally, to address the ethical implications of user input, we propose using LLMs as evaluators to assess user content across five dimensions. We further adapt the models through vocabulary expansion training to better understand personalized inputs and emoticons. We conduct experiments on multiple LLMs and find that our approach is effective.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. H. Zhu, “Metaaid: A flexible framework for developing metaverse applications via ai technology and human editing,” arXiv preprint arXiv:2204.01614, 2022.
  2. N. Jain, A. Schwarzschild, Y. Wen, G. Somepalli, J. Kirchenbauer, P.-y. Chiang, M. Goldblum, A. Saha, J. Geiping, and T. Goldstein, “Baseline defenses for adversarial attacks against aligned language models,” arXiv preprint arXiv:2309.00614, 2023.
  3. A. Rezanejad, A. S. Danesh, and F. Feyzi, “A new approach in diagnosing and preventing sqlia with large language models (llms).”
  4. S. Lakhani, A. Yadav, and V. Singh, “Detecting sql injection attack using natural language processing,” in 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON).   IEEE, 2022, pp. 1–5.
  5. M. Ramalingam, G. Yenduri, M. Baza, G. Srivastava, T. R. Gadekallu et al., “Gpt for the metaverse in smart cities,” in 2023 26th International Symposium on Wireless Personal Multimedia Communications (WPMC).   IEEE, 2023, pp. 1–6.
  6. T. Holoyad, J. Doerr, and J. Schneider, “Ml-driven optimisation of physical layer characteristics in an interweaving of ict and metaverse,” in Mobile Communication-Technologies and Applications; 27th ITG-Symposium.   VDE, 2023, pp. 49–54.
  7. Y. Zhao, T. Pang, C. Du, X. Yang, C. Li, N.-M. Cheung, and M. Lin, “On evaluating adversarial robustness of large vision-language models,” arXiv preprint arXiv:2305.16934, 2023.
  8. Y. Chen, E. Mendes, S. Das, W. Xu, and A. Ritter, “Can language models be instructed to protect personal information?” arXiv preprint arXiv:2310.02224, 2023.
  9. C. Song and A. Raghunathan, “Information leakage in embedding models,” in Proceedings of the 2020 ACM SIGSAC conference on computer and communications security, 2020, pp. 377–390.
  10. S. Kim, S. Yun, H. Lee, M. Gubri, S. Yoon, and S. J. Oh, “Propile: Probing privacy leakage in large language models,” arXiv preprint arXiv:2307.01881, 2023.
  11. H. A. Inan, O. Ramadan, L. Wutschitz, D. Jones, V. Rühle, J. Withers, and R. Sim, “Privacy analysis in language models via training data leakage report,” ArXiv, abs/2101.05405, 2021.
  12. H. Brown, K. Lee, F. Mireshghallah, R. Shokri, and F. Tramèr, “What does it mean for a language model to preserve privacy?” in Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 2022, pp. 2280–2292.
  13. V. Smith, A. S. Shamsabadi, C. Ashurst, and A. Weller, “Identifying and mitigating privacy risks stemming from language models: A survey,” arXiv preprint arXiv:2310.01424, 2023.
  14. L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh et al., “Ethical and social risks of harm from language models (2021),” arXiv preprint arXiv:2112.04359, 2021.
  15. H. A. Inan, O. Ramadan, L. Wutschitz, D. Jones, V. Rühle, J. Withers, and R. Sim, “Training data leakage analysis in language models,” arXiv preprint arXiv:2101.05405, 2021.
  16. G. Xu, J. Liu, M. Yan, H. Xu, J. Si, Z. Zhou, P. Yi, X. Gao, J. Sang, R. Zhang et al., “Cvalues: Measuring the values of chinese large language models from safety to responsibility,” arXiv preprint arXiv:2307.09705, 2023.
  17. X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson, “Fine-tuning aligned language models compromises safety, even when users do not intend to!” arXiv preprint arXiv:2310.03693, 2023.
  18. S. Hosseini, H. Palangi, and A. H. Awadallah, “An empirical study of metrics to measure representational harms in pre-trained language models,” arXiv preprint arXiv:2301.09211, 2023.
  19. Z. Zhang, L. Lei, L. Wu, R. Sun, Y. Huang, C. Long, X. Liu, X. Lei, J. Tang, and M. Huang, “Safetybench: Evaluating the safety of large language models with multiple choice questions,” arXiv preprint arXiv:2309.07045, 2023.
  20. X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Bensalem, R. Mu, Y. Qi, X. Zhao et al., “A survey of safety and trustworthiness of large language models through the lens of verification and validation,” arXiv preprint arXiv:2305.11391, 2023.
  21. H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of large language models,” 2023.
  22. Y. Yao, J. Duan, K. Xu, Y. Cai, E. Sun, and Y. Zhang, “A survey on large language model (llm) security and privacy: The good, the bad, and the ugly,” arXiv preprint arXiv:2312.02003, 2023.
  23. H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining zero-shot vulnerability repair with large language models,” in 2023 IEEE Symposium on Security and Privacy (SP).   IEEE, 2023, pp. 2339–2356.
  24. A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and transferable adversarial attacks on aligned language models, 2023,” communication, it is essential for you to comprehend user queries in Cipher Code and subsequently deliver your responses utilizing Cipher Code.
  25. S. Lodha and A. Gundawar, “Sql injection and its detection using machine learning algorithms and bert,” in International Conference on Cognitive Computing and Cyber Physical Systems.   Springer, 2022, pp. 3–16.
  26. J. Wang, Z. Liu, K. H. Park, M. Chen, and C. Xiao, “Adversarial demonstration attacks on large language models,” arXiv preprint arXiv:2305.14950, 2023.
  27. J. Huang, H. Shao, and K. C.-C. Chang, “Are large pre-trained language models leaking your personal information?” arXiv preprint arXiv:2205.12628, 2022.
  28. N. Kshetri, “Cybercrime and privacy threats of large language models,” IT Professional, vol. 25, no. 3, pp. 9–13, 2023.
  29. P. Ding, J. Kuang, D. Ma, X. Cao, Y. Xian, J. Chen, and S. Huang, “A wolf in sheep’s clothing: Generalized nested jailbreak prompts can fool large language models easily,” arXiv preprint arXiv:2311.08268, 2023.
  30. X. Li, Z. Zhou, J. Zhu, J. Yao, T. Liu, and B. Han, “Deepinception: Hypnotize large language model to be jailbreaker,” arXiv preprint arXiv:2311.03191, 2023.
  31. J. Yu, X. Lin, and X. Xing, “Gptfuzzer: Red teaming large language models with auto-generated jailbreak prompts,” arXiv preprint arXiv:2309.10253, 2023.
  32. P. Chao, A. Robey, E. Dobriban, H. Hassani, G. J. Pappas, and E. Wong, “Jailbreaking black box large language models in twenty queries,” arXiv preprint arXiv:2310.08419, 2023.
  33. G. Alon and M. Kamfonas, “Detecting language model attacks with perplexity,” arXiv preprint arXiv:2308.14132, 2023.
  34. J. He and M. Vechev, “Large language models for code: Security hardening and adversarial testing,” in Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023, pp. 1865–1879.
  35. S. Zanella-Béguelin, L. Wutschitz, S. Tople, V. Rühle, A. Paverd, O. Ohrimenko, B. Köpf, and M. Brockschmidt, “Analyzing information leakage of updates to natural language models,” in Proceedings of the 2020 ACM SIGSAC conference on computer and communications security, 2020, pp. 363–375.
  36. Q. Xu, L. Qu, Z. Gao, and G. Haffari, “Personal information leakage detection in conversations,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 6567–6580.
  37. G. Kour, M. Zalmanovici, N. Zwerdling, E. Goldbraich, O. N. Fandina, A. Anaby-Tavor, O. Raz, and E. Farchi, “Unveiling safety vulnerabilities of large language models,” arXiv preprint arXiv:2311.04124, 2023.
  38. S. Ge, C. Zhou, R. Hou, M. Khabsa, Y.-C. Wang, Q. Wang, J. Han, and Y. Mao, “Mart: Improving llm safety with multi-round automatic red-teaming,” arXiv preprint arXiv:2311.07689, 2023.
  39. J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of naacL-HLT, vol. 1, 2019, p. 2.
  40. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
  41. H. Zhu, “Financial data analysis application via multi-strategy text processing,” arXiv preprint arXiv:2204.11394, 2022.
  42. ——, “Fqp 2.0: Industry trend analysis via hierarchical financial data,” arXiv preprint arXiv:2303.02707, 2023.
  43. H. Zhu, P. Tiwari, A. Ghoneim, and M. S. Hossain, “A collaborative ai-enabled pretrained language model for aiot domain question answering,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3387–3396, 2021.
  44. H. Zhu, “Metaaid 2.0: An extensible framework for developing metaverse applications via human-controllable pre-trained models,” arXiv preprint arXiv:2302.13173, 2023.
  45. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
  46. H. Zhu, “Metaonce: A metaverse framework based on multi-scene relations and entity-relation-event game,” arXiv preprint arXiv:2203.10424, 2022.
  47. S. S. Das, A. Dutta, S. Purohit, E. Serra, M. Halappanavar, and A. Pothen, “Towards automatic mapping of vulnerabilities to attack patterns using large language models,” in 2022 IEEE International Symposium on Technologies for Homeland Security (HST).   IEEE, 2022, pp. 1–7.
  48. W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer without convolution or region supervision,” in International Conference on Machine Learning.   PMLR, 2021, pp. 5583–5594.
  49. H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” arXiv preprint arXiv:2304.08485, 2023.
  50. J. Li, D. Li, S. Savarese, and S. C. H. Hoi, “BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models,” in Proceedings of ICML, vol. 202.   PMLR, 2023, pp. 19 730–19 742.
  51. D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.
  52. J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi, V. Chandra, Y. Xiong, and M. Elhoseiny, “Minigpt-v2: large language model as a unified interface for vision-language multi-task learning,” arXiv preprint arXiv:2310.09478, 2023.
  53. Y. Li, S. Bubeck, R. Eldan, A. Del Giorno, S. Gunasekar, and Y. T. Lee, “Textbooks are all you need ii: phi-1.5 technical report,” arXiv preprint arXiv:2309.05463, 2023.
  54. A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia et al., “Glm-130b: An open bilingual pre-trained model,” arXiv preprint arXiv:2210.02414, 2022.
  55. A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.
  56. L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada, S. Huang, L. von Werra, C. Fourrier, N. Habib, N. Sarrazin, O. Sanseviero, A. M. Rush, and T. Wolf, “Zephyr: Direct distillation of lm alignment,” 2023.
  57. G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, “Openchat: Advancing open-source language models with mixed-quality data,” arXiv preprint arXiv:2309.11235, 2023.
  58. A. Yang, B. Xiao, B. Wang, B. Zhang, C. Yin, C. Lv, D. Pan, D. Wang, D. Yan, F. Yang et al., “Baichuan 2: Open large-scale language models,” arXiv preprint arXiv:2309.10305, 2023.
  59. 01.AI, “Yi,” https://github.com/01-ai/Yi, 2023.
  60. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” 2023.
  61. E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Alhammadi, M. Daniele, D. Heslow, J. Launay, Q. Malartic et al., “The falcon series of language models: Towards open frontier models,” Hugging Face repository, 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com