Room Occupancy Prediction: Exploring the Power of Machine Learning and Temporal Insights (2312.14426v1)
Abstract: Energy conservation in buildings is a paramount concern to combat greenhouse gas emissions and combat climate change. The efficient management of room occupancy, involving actions like lighting control and climate adjustment, is a pivotal strategy to curtail energy consumption. In contexts where surveillance technology isn't viable, non-intrusive sensors are employed to estimate room occupancy. In this study, we present a predictive framework for room occupancy that leverages a diverse set of machine learning models, with Random Forest consistently achieving the highest predictive accuracy. Notably, this dataset encompasses both temporal and spatial dimensions, revealing a wealth of information. Intriguingly, our framework demonstrates robust performance even in the absence of explicit temporal modeling. These findings underscore the remarkable predictive power of traditional machine learning models. The success can be attributed to the presence of feature redundancy, the simplicity of linear spatial and temporal patterns, and the advantages of high-frequency data sampling. While these results are compelling, it's essential to remain open to the possibility that explicitly modeling the temporal dimension could unlock deeper insights or further enhance predictive capabilities in specific scenarios. In summary, our research not only validates the effectiveness of our prediction framework for continuous and classification tasks but also underscores the potential for improvements through the inclusion of temporal aspects. The study highlights the promise of machine learning in shaping energy-efficient practices and room occupancy management.
- Huovila, P., Ala-Juusela, M., Melchert, L., Pouffary, S., Cheng, C.-C., Ürge-Vorsatz, D., Koeppel, S., Svenningsen, N., Graham, P.: Buildings and climate change: Summary for decision-makers (2009) Jacobson [2009] Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2(2), 148–173 (2009) Li and Becerik-Gerber [2011] Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2(2), 148–173 (2009) Li and Becerik-Gerber [2011] Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2(2), 148–173 (2009) Li and Becerik-Gerber [2011] Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics 25(3), 535–546 (2011) Wang et al. [2018] Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Wang, W., Chen, J., Hong, T., Zhu, N.: Occupancy prediction through markov based feedback recurrent neural network (m-frnn) algorithm with wifi probe technology. Building and Environment 138, 160–170 (2018) Tekler et al. [2019] Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Tekler, Z.D., Low, R., Blessing, L.: An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment. In: Journal of Physics: Conference Series, vol. 1343, p. 012116 (2019). IOP Publishing Nassif [2012] Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Nassif, N.: A robust co2-based demand-controlled ventilation control strategy for multi-zone hvac systems. Energy and buildings 45, 72–81 (2012) Raykov et al. [2016] Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Raykov, Y.P., Ozer, E., Dasika, G., Boukouvalas, A., Little, M.A.: Predicting room occupancy with a single passive infrared (pir) sensor through behavior extraction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1016–1027 (2016) Shih and Rowe [2015] Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Shih, O., Rowe, A.: Occupancy estimation using ultrasonic chirps. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 149–158 (2015) Uziel et al. [2013] Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Uziel, S., Elste, T., Kattanek, W., Hollosi, D., Gerlach, S., Goetze, S.: Networked embedded acoustic processing system for smart building applications. In: 2013 Conference on Design and Architectures for Signal and Image Processing, pp. 349–350 (2013). IEEE Liu et al. [2013] Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Liu, D., Guan, X., Du, Y., Zhao, Q.: Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors. Measurement Science and Technology 24(7), 074023 (2013) Tekler et al. [2022] Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Tekler, Z.D., Low, R., Yuen, C., Blessing, L.: Plug-mate: An iot-based occupancy-driven plug load management system in smart buildings. Building and Environment 223, 109472 (2022) Jordan and Mitchell [2015] Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Linero et al. [2022] Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Linero, A.R., Basak, P., Li, Y., Sinha, D.: Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis 17(3), 997–1020 (2022) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Mao [2022] Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Mao, S.: Time Series and Machine Learning Models for Financial Markets Forecast. The Florida State University, Tallahassee (2022) Kadouche et al. [2010] Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Kadouche, R., Chikhaoui, B., Abdulrazak, B.: User’s behavior study for smart houses occupant prediction. annals of telecommunications-annales des télécommunications 65, 539–543 (2010) Sangogboye et al. [2016] Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Sangogboye, F.C., Imamovic, K., Kjærgaard, M.B.: Improving occupancy presence prediction via multi-label classification. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). IEEE Razavi et al. [2019] Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy and Buildings 183, 195–208 (2019) Park et al. [2021] Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Park, S., Kwon, K., Lee, E., Kim, S., Kim, Y.: Lstm-based office occupancy detection using smart plug data. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1707–1709 (2021). IEEE Koklu and Tutuncu [2019] Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Koklu, M., Tutuncu, K.: Tree based classification methods for occupancy detection. In: IOP Conference Series: Materials Science and Engineering, vol. 675, p. 012032 (2019). IOP Publishing Li et al. [2023] Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Li, Y., Mao, S., Yuan, Y., Wang, Z., Kang, Y., Yao, Y.: Beyond tides and time: Machine learning’s triumph in water quality forecasting. American Journal of Applied Mathematics and Statistics 11(3), 89–97 (2023) Singh et al. [2018] Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Singh, A.P., Jain, V., Chaudhari, S., Kraemer, F.A., Werner, S., Garg, V.: Machine learning-based occupancy estimation using multivariate sensor nodes. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). IEEE Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf