Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Transformer-RNN Architecture for Household Occupancy Detection Using Low-Resolution Smart Meter Data (2308.14114v1)

Published 27 Aug 2023 in cs.LG

Abstract: Residential occupancy detection has become an enabling technology in today's urbanized world for various smart home applications, such as building automation, energy management, and improved security and comfort. Digitalization of the energy system provides smart meter data that can be used for occupancy detection in a non-intrusive manner without causing concerns regarding privacy and data security. In particular, deep learning techniques make it possible to infer occupancy from low-resolution smart meter data, such that the need for accurate occupancy detection with privacy preservation can be achieved. Our work is thus motivated to develop a privacy-aware and effective model for residential occupancy detection in contemporary living environments. Our model aims to leverage the advantages of both recurrent neural networks (RNNs), which are adept at capturing local temporal dependencies, and transformers, which are effective at handling global temporal dependencies. Our designed hybrid transformer-RNN model detects residential occupancy using hourly smart meter data, achieving an accuracy of nearly 92\% across households with diverse profiles. We validate the effectiveness of our method using a publicly accessible dataset and demonstrate its performance by comparing it with state-of-the-art models, including attention-based occupancy detection methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xinyu Liang (11 papers)
  2. Hao Wang (1124 papers)

Summary

We haven't generated a summary for this paper yet.