Probing quantum properties of black holes with a Floquet-driven optical lattice simulator (2312.14058v4)
Abstract: In the curved spacetime of a black hole, quantum physics gives rise to distinctive effects such as Hawking radiation and maximally fast scrambling. Here, we present a scheme for an analogue quantum simulation of (1 + 1) and (2 + 1)-dimensional black holes using ultracold atoms in a locally Floquet-driven optical lattice. We show how the effective dynamics of the driven system can generate position-dependent tunnelling amplitudes that encode the curved geometry of the black hole. Moreover, we provide a simple and robust scheme to determine the Hawking temperature of a (1+1)D simulated black hole based solely on on-site atom population measurements. Combined with the highly tunable onsite atom-atom interactions typical for cold atoms, our simulator provides a powerful and feasible platform to probe the scrambling of quantum information in black holes. We illustrate the ergodicity of our (2+1)D black-hole simulator by showing numerically that its level statistics in the hard-core limit approaches the ergodic regime faster than a globally homogeneous Hamiltonian.
- J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
- S. W. Hawking, Nature 248, 30 (1974).
- S. W. Hawking, Communications in mathematical physics 43, 199 (1975).
- T. Damour and R. Ruffini, Physical Review D 14, 332 (1976).
- M. Arzano, A. J. M. Medved, and E. C. Vagenas, Journal of High Energy Physics 2005, 037 (2005).
- M. K. Parikh and F. Wilczek, Physical review letters 85, 5042 (2000).
- S. W. Hawking, THE PATH INTEGRAL APPROACH TO QUANTUM GRAVITY, in General Relativity: An Einstein Centenary Survey (1980) pp. 746–789.
- N. D. Birrell and P. C. W. Davies, Quantum fields in curved space (Cambridge university press, 1984).
- Y. Sekino and L. Susskind, Journal of High Energy Physics 2008, 065 (2008).
- J. Maldacena and D. Stanford, Physical Review D 94, 106002 (2016).
- W. G. Unruh, Physical Review Letters 46, 1351 (1981).
- W. G. Unruh, Physical Review D 51, 2827 (1995).
- F. Michel and R. Parentani, Physical Review D 90, 044033 (2014).
- A. Coutant and S. Weinfurtner, Physical Review D 94, 064026 (2016).
- F. Bemani, R. Roknizadeh, and M. Naderi, Annals of Physics 388, 186 (2018).
- M. J. Jacquet, S. Weinfurtner, and F. König, Philosophical Transactions of the Royal Society A 378, 20190239 (2020a).
- J. Steinhauer, Nature Physics 12, 959 (2016).
- C. Gross and I. Bloch, Science 357, 995 (2017).
- J.-y. Choi, Journal of the Korean Physical Society 82, 875 (2023).
- B. Wang, F. N. Ünal, and A. Eckardt, Physical Review Letters 120, 243602 (2018).
- G. M. Nixon, F. N. Unal, and U. Schneider, arXiv preprint 10.48550/arXiv:2309.12124 (2023).
- M. D. Horner, arXiv preprint arXiv:2212.12548 (2022).
- A. Deger, M. D. Horner, and J. K. Pachos, Phys. Rev. B 108, 155124 (2023).
- M. D. Horner, A. Hallam, and J. K. Pachos, Physical Review Letters 130, 016701 (2023).
- See Supplementary Material.
- M. Born, The born-einstein letters 1916-1955. international series in pure and applied physics (1961).
- J. Yepez, arXiv preprint arXiv:1106.2037 (2011).
- J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett. 105, 190403 (2010).
- N. Goldman and J. Dalibard, Physical Review X 4, 031027 (2014).
- M. Bukov, L. D’Alessio, and A. Polkovnikov, Advances in Physics 64, 139 (2015), 1407.4803 [cond-mat] .
- A. Eckardt, Reviews of Modern Physics 89, 011004 (2017).
- C. Weitenberg and J. Simonet, Nature Physics 17, 1342 (2021).
- G. W. Gibbons and S. W. Hawking, Physical Review D 15, 2752 (1977).
- C. Gross and W. S. Bakr, Nature Physics 17, 1316 (2021).
- S. Liberati, G. Tricella, and A. Trombettoni, Applied Sciences 10, 8868 (2020).