Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Joint Communication and Computation Design for Semantic Wireless Communication with Probability Graph (2312.13975v2)

Published 21 Dec 2023 in cs.IT and math.IT

Abstract: In this paper, we delve into the challenge of optimizing joint communication and computation for semantic communication over wireless networks using a probability graph framework. In the considered model, the base station (BS) extracts the small-sized compressed semantic information through removing redundant messages based on the stored knowledge base. Specifically, the knowledge base is encapsulated in a probability graph that encapsulates statistical relations. At the user side, the compressed information is accurately deduced using the same probability graph employed by the BS. While this approach introduces an additional computational overhead for semantic information extraction, it significantly curtails communication resource consumption by transmitting concise data. We derive both communication and computation cost models based on the inference process of the probability graph. Building upon these models, we introduce a joint communication and computation resource allocation problem aimed at minimizing the overall energy consumption of the network, while accounting for latency, power, and semantic constraints. To address this problem, we obtain a closed-form solution for transmission power under a fixed semantic compression ratio. Subsequently, we propose an efficient linear search-based algorithm to attain the optimal solution for the considered problem with low computational complexity. Simulation results underscore the effectiveness of our proposed system, showcasing notable improvements compared to conventional non-semantic schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  2. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE communications magazine, vol. 52, no. 2, pp. 186–195, 2014.
  3. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, 2019.
  4. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for b5g networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE journal of selected topics in signal processing, vol. 17, no. 1, pp. 9–39, 2023.
  5. Z. Chen, Z. Zhang, and Z. Yang, “Big ai models for 6g wireless networks: Opportunities, challenges, and research directions,” arXiv preprint arXiv:2308.06250, 2023.
  6. L. Lin, Z. Zhao, Z. Yang, and Z. Zhang, “Joint communication and learning design of differential privacy for federated learning over multi-cell networks,” in 2023 IEEE Int. Conf. Commun. (ICC Workshops), May. 2023, pp. 770–775.
  7. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2022.
  8. W. Weaver, “Recent contributions to the mathematical theory of communication,” ETC: a review of general semantics, pp. 261–281, 1953.
  9. C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data, more knowledge: Building next generation semantic communication networks,” arXiv preprint arXiv:2211.14343, 2022.
  10. Z. Zhao, Z. Yang, Y. Hu, L. Lin, and Z. Zhang, “Semantic information extraction for text data with probability graph,” in 2023 IEEE/CIC Int. Conf. Commun. China (ICCC Workshops), Aug. 2023.
  11. Z. Weng, Z. Qin, and G. Y. Li, “Semantic communications for speech signals,” in ICC 2021-IEEE International Conference on Communications.   Montreal, QC, Canada: IEEE, 2021.
  12. Z. Zhao, Z. Yang, Q.-V. Pham, Q. Yang, and Z. Zhang, “Semantic communication with probability graph: A joint communication and computation design,” in 2023 IEEE 98th Veh. Tech. Conf. (VTC2023-Fall), Oct. 2023.
  13. Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and K. Huang, “What is semantic communication? a view on conveying meaning in the era of machine intelligence,” Journal of Communications and Information Networks, vol. 6, no. 4, pp. 336–371, 2021.
  14. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  15. B. Güler, A. Yener, and A. Swami, “The semantic communication game,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018.
  16. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  17. Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2434–2444, 2021.
  18. H. Tong, Z. Yang, S. Wang, Y. Hu, W. Saad, and C. Yin, “Federated learning based audio semantic communication over wireless networks,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021.
  19. H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 142–153, 2020.
  20. T. Han, Q. Yang, Z. Shi, S. He, and Z. Zhang, “Semantic-preserved communication system for highly efficient speech transmission,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 245–259, 2022.
  21. X. Peng, Z. Qin, D. Huang, X. Tao, J. Lu, G. Liu, and C. Pan, “A robust deep learning enabled semantic communication system for text,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 2704–2709.
  22. Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Energy efficient semantic communication over wireless networks with rate splitting,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 5, pp. 1484–1495, 2023.
  23. L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Communications Letters, vol. 11, no. 7, pp. 1394–1398, 2022.
  24. T. L. Griffiths and M. Steyvers, “A probabilistic approach to semantic representation,” in Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society.   Routledge, 2019, pp. 381–386.
  25. F. N. Al-Wesabi, “A hybrid intelligent approach for content authentication and tampering detection of arabic text transmitted via internet.” Computers, Materials & Continua, vol. 66, no. 1, 2021.
  26. G. Kordopatis-Zilos, S. Papadopoulos, and I. Kompatsiaris, “Geotagging text content with language models and feature mining,” Proceedings of the IEEE, vol. 105, no. 10, pp. 1971–1986, 2017.
  27. S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 2, pp. 494–514, 2022.
  28. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104, no. 1, pp. 11–33, 2016.
  29. P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti, “Knowledge graphs: New directions for knowledge representation on the semantic web (dagstuhl seminar 18371),” in Dagstuhl reports, vol. 8, no. 9.   Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
  30. J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 50–70, 2022.
  31. M. Xie, J. Wang, and X. Zhang, “Joint model of triple relation extraction with label embeddings,” in 2021 International Conference on Asian Language Processing (IALP), 2021, pp. 105–110.
  32. M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D’Souza, G. Kismihók, M. Stocker, and S. Auer, “Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge,” in Proceedings of the 10th International Conference on Knowledge Capture, 2019, pp. 243–246.
  33. M. Atef Mosa, “Predicting semantic categories in text based on knowledge graph combined with machine learning techniques,” Applied Artificial Intelligence, vol. 35, no. 12, pp. 933–951, 2021.
  34. F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, “Cognitive semantic communication systems driven by knowledge graph,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 4860–4865.
  35. S. Jiang, Y. Liu, Y. Zhang, P. Luo, K. Cao, J. Xiong, H. Zhao, and J. Wei, “Reliable semantic communication system enabled by knowledge graph,” Entropy, vol. 24, no. 6, p. 846, 2022.
  36. L. Hu, Y. Li, H. Zhang, L. Yuan, F. Zhou, and Q. Wu, “Robust semantic communication driven by knowledge graph,” in 2022 9th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 2022.
  37. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
  38. A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new concept, metric, and tool,” Foundations and Trends® in Networking, vol. 12, no. 3, pp. 162–259, 2017.
  39. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  40. B. D. Lund and T. Wang, “Chatting about chatgpt: how may ai and gpt impact academia and libraries?” Library Hi Tech News, vol. 40, no. 3, pp. 26–29, 2023.
  41. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future radio access,” in 2013 IEEE 77th vehicular technology conference (VTC Spring).   IEEE, 2013.
Citations (8)

Summary

We haven't generated a summary for this paper yet.