Efficient Quantum Algorithm for Filtering Product States (2312.13892v3)
Abstract: We introduce a quantum algorithm to efficiently prepare states with a small energy variance at the target energy. We achieve it by filtering a product state at the given energy with a Lorentzian filter of width $\delta$. Given a local Hamiltonian on $N$ qubits, we construct a parent Hamiltonian whose ground state corresponds to the filtered product state with variable energy variance proportional to $\delta\sqrt{N}$. We prove that the parent Hamiltonian is gapped and its ground state can be efficiently implemented in $\mathrm{poly}(N,1/\delta)$ time via adiabatic evolution. We numerically benchmark the algorithm for a particular non-integrable model and find that the adiabatic evolution time to prepare the filtered state with a width $\delta$ is independent of the system size $N$. Furthermore, the adiabatic evolution can be implemented with circuit depth $\mathcal{O}(N2\delta{-4})$. Our algorithm provides a way to study the finite energy regime of many body systems in quantum simulators by directly preparing a finite energy state, providing access to an approximation of the microcanonical properties at an arbitrary energy.
- D. Deutsch, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400, 97 (1985).
- S. Lloyd, Science 273, 1073 (1996).
- J. I. Cirac and P. Zoller, Physics Today 57, 38 (2004).
- T. Cubitt and A. Montanaro, SIAM Journal on Computing 45, 268 (2016).
- J. M. Deutsch, Reports on Progress in Physics 81, 082001 (2018).
- A. Y. Kitaev, Russian Mathematical Surveys 52, 1191 (1997).
- D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).
- K. Seki and S. Yunoki, Phys. Rev. B 106, 155111 (2022).
- Z. Ding and L. Lin, PRX Quantum 4, 020331 (2023).
- T. Koma and B. Nachtergaele, “The spectral gap of the ferromagnetic xxz chain,” (1995), arXiv:cond-mat/9512120 [cond-mat] .
- E. H. Lieb, Communications in Mathematical Physics 31, 327 (1973).
- U. Schollwöck, Annals of Physics 326, 96–192 (2011).
- B. W. Reichardt, in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing (2004) pp. 502–510.
- Y. Huang, Nuclear Physics B 966, 115373 (2021).
- T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).
- M. H. S. Amin, Physical Review Letters 102 (2009), 10.1103/physrevlett.102.220401.
- G. H. Low and I. L. Chuang, Physical Review Letters 118, 010501 (2017), 1606.02685 .
- G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.