Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the molecular nature of the $Ω_c(3120)$ and its analogy with the $Ω(2012)$ (2312.13732v2)

Published 21 Dec 2023 in hep-ph

Abstract: We make a study of the $\Omega_c(3120)$, one of the five $\Omega_c$ states observed by the LHCb collaboration, which is well reproduced as a molecular state from the $\Xi*_c \bar K$ and $\Omega*_c \eta$ channels mostly. The state with $JP = 3/2-$ decays to $\Xi_c \bar K$ in $D$-wave and we include this decay channel in our approach, as well as the effect of the $\Xi*_c$ width. With all these ingredients, we determine the fraction of the $\Omega_c(3120)$ width that goes into $\Xi_c \pi \bar K$, which could be a measure of the $\Xi*_c \bar K$ molecular component, but due to a relatively big binding, compared to its analogous $\Omega(2012)$ state, we find only a small fraction of about 3%, which makes this measurement difficult with present statistics. As an alternative, we evaluate the scattering length and effective range of the $\Xi*_c \bar K$ and $\Omega*_c \eta$ channels which together with the binding and width of the $\Omega_c(3120)$ state, could give us an answer to the issue of the compositeness of this state when these magnitudes are determined experimentally, something feasible nowadays, for instance, measuring correlation functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. J. Yelton et al. (Belle Collaboration), Phys. Rev. Lett. 121, 052003 (2018), arXiv:1805.09384 [hep-ex] .
  2. L.-Y. Xiao and X.-H. Zhong, Phys. Rev. D 98, 034004 (2018), arXiv:1805.11285 [hep-ph] .
  3. M. P. Valderrama, Phys. Rev. D 98, 054009 (2018), arXiv:1807.00718 [hep-ph] .
  4. Y.-H. Lin and B.-S. Zou, Phys. Rev. D 98, 056013 (2018), arXiv:1807.00997 [hep-ph] .
  5. R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018), arXiv:1808.01950 [hep-ph] .
  6. J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 776, 17 (2006), arXiv:hep-ph/0601249 .
  7. T. Gutsche and V. E. Lyubovitskij, J. Phys. G 48, 025001 (2020), arXiv:1912.10894 [hep-ph] .
  8. S. Jia et al. (Belle Collaboration), Phys. Rev. D 100, 032006 (2019), arXiv:1906.00194 [hep-ex] .
  9. Belle (Belle Collaboration),   (2022), arXiv:2207.03090 [hep-ex] .
  10. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017), arXiv:1703.04639 [hep-ex] .
  11. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 131, 131902 (2023), arXiv:2302.04733 [hep-ex] .
  12. W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008), arXiv:0711.2492 [nucl-th] .
  13. G. Chiladze and A. F. Falk, Phys. Rev. D 56, R6738 (1997), arXiv:hep-ph/9707507 .
  14. A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).
  15. J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763, 90 (2005), arXiv:hep-ph/0507071 .
  16. M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017), arXiv:1703.07774 [hep-ph] .
  17. W. Wang and R.-L. Zhu, Phys. Rev. D 96, 014024 (2017), arXiv:1704.00179 [hep-ph] .
  18. B. Chen and X. Liu, Phys. Rev. D 96, 094015 (2017), arXiv:1704.02583 [hep-ph] .
  19. G. Yang and J. Ping, Phys. Rev. D 97, 034023 (2018), arXiv:1703.08845 [hep-ph] .
  20. C. S. An and H. Chen, Phys. Rev. D 96, 034012 (2017), arXiv:1705.08571 [hep-ph] .
  21. M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017), arXiv:1704.00259 [hep-ph] .
  22. U. G. Meissner, Phys. Rept. 161, 213 (1988).
  23. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
  24. T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013), arXiv:1310.1176 [hep-ph] .
  25. S. Weinberg, Phys. Rev. 137, B672 (1965).
  26. L. Tolos and L. Fabbietti, Prog. Part. Nucl. Phys. 112, 103770 (2020), arXiv:2002.09223 [nucl-ex] .
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com