On the molecular nature of the $Ω_c(3120)$ and its analogy with the $Ω(2012)$ (2312.13732v2)
Abstract: We make a study of the $\Omega_c(3120)$, one of the five $\Omega_c$ states observed by the LHCb collaboration, which is well reproduced as a molecular state from the $\Xi*_c \bar K$ and $\Omega*_c \eta$ channels mostly. The state with $JP = 3/2-$ decays to $\Xi_c \bar K$ in $D$-wave and we include this decay channel in our approach, as well as the effect of the $\Xi*_c$ width. With all these ingredients, we determine the fraction of the $\Omega_c(3120)$ width that goes into $\Xi_c \pi \bar K$, which could be a measure of the $\Xi*_c \bar K$ molecular component, but due to a relatively big binding, compared to its analogous $\Omega(2012)$ state, we find only a small fraction of about 3%, which makes this measurement difficult with present statistics. As an alternative, we evaluate the scattering length and effective range of the $\Xi*_c \bar K$ and $\Omega*_c \eta$ channels which together with the binding and width of the $\Omega_c(3120)$ state, could give us an answer to the issue of the compositeness of this state when these magnitudes are determined experimentally, something feasible nowadays, for instance, measuring correlation functions.
- J. Yelton et al. (Belle Collaboration), Phys. Rev. Lett. 121, 052003 (2018), arXiv:1805.09384 [hep-ex] .
- L.-Y. Xiao and X.-H. Zhong, Phys. Rev. D 98, 034004 (2018), arXiv:1805.11285 [hep-ph] .
- M. P. Valderrama, Phys. Rev. D 98, 054009 (2018), arXiv:1807.00718 [hep-ph] .
- Y.-H. Lin and B.-S. Zou, Phys. Rev. D 98, 056013 (2018), arXiv:1807.00997 [hep-ph] .
- R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018), arXiv:1808.01950 [hep-ph] .
- J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 776, 17 (2006), arXiv:hep-ph/0601249 .
- T. Gutsche and V. E. Lyubovitskij, J. Phys. G 48, 025001 (2020), arXiv:1912.10894 [hep-ph] .
- S. Jia et al. (Belle Collaboration), Phys. Rev. D 100, 032006 (2019), arXiv:1906.00194 [hep-ex] .
- Belle (Belle Collaboration), (2022), arXiv:2207.03090 [hep-ex] .
- R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017), arXiv:1703.04639 [hep-ex] .
- R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 131, 131902 (2023), arXiv:2302.04733 [hep-ex] .
- W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008), arXiv:0711.2492 [nucl-th] .
- G. Chiladze and A. F. Falk, Phys. Rev. D 56, R6738 (1997), arXiv:hep-ph/9707507 .
- A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).
- J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763, 90 (2005), arXiv:hep-ph/0507071 .
- M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017), arXiv:1703.07774 [hep-ph] .
- W. Wang and R.-L. Zhu, Phys. Rev. D 96, 014024 (2017), arXiv:1704.00179 [hep-ph] .
- B. Chen and X. Liu, Phys. Rev. D 96, 094015 (2017), arXiv:1704.02583 [hep-ph] .
- G. Yang and J. Ping, Phys. Rev. D 97, 034023 (2018), arXiv:1703.08845 [hep-ph] .
- C. S. An and H. Chen, Phys. Rev. D 96, 034012 (2017), arXiv:1705.08571 [hep-ph] .
- M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017), arXiv:1704.00259 [hep-ph] .
- U. G. Meissner, Phys. Rept. 161, 213 (1988).
- S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
- T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013), arXiv:1310.1176 [hep-ph] .
- S. Weinberg, Phys. Rev. 137, B672 (1965).
- L. Tolos and L. Fabbietti, Prog. Part. Nucl. Phys. 112, 103770 (2020), arXiv:2002.09223 [nucl-ex] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.