Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Characterizing the magnetic noise power spectrum of dark spins in diamond (2312.12643v2)

Published 19 Dec 2023 in quant-ph and cond-mat.mtrl-sci

Abstract: Coherence times of spin qubits in solid-state platforms are often limited by the presence of a spin bath. While some properties of these typically dark bath spins can be indirectly characterized via the central qubit, it is important to characterize their properties by direct measurement. Here we use pulsed electron paramagnetic resonance (pEPR) based Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling to measure the magnetic noise power spectra for ensembles of P1 (substitutional nitrogen) centers in diamond that typically form the bath for NV (nitrogen-vacancy) centers. The experiments on the P1 centers were performed on a low [N] CVD (chemical vapor deposition) sample and a high [N] HPHT (high-temperature, high-pressure) sample at 89 mT. We characterize the NV centers of the latter sample using the same 2.5 GHz pEPR spectrometer. All power spectra show two distinct features, a broad component that is observed to scale as approximately $1/\omega{0.7-1.0}$, and a prominent peak at the ${13}$C Larmor frequency. The behavior of the broad component is consistent with an inhomogeneous distribution of Lorentzian spectra due to clustering of P1 centers, which has recently been shown to be prevalent in HPHT diamond. It is unknown if such clustering occurs in CVD diamond. We develop techniques utilizing harmonics of the CPMG filter function to improve characterization of high-frequency signals, which we demonstrate on the ${13}$C nuclear Larmor frequency. At 190 mT this is 2.04 MHz, 5.7 times higher than the CPMG modulation frequency ($<357$ kHz, hardware-limited). We assess the robustness of our methods in the presence of finite pulse widths and flip angle errors. Understanding the interactions of dark spins will inform methods of diamond fabrication for quantum technology. These techniques are applicable to ac magnetometry for nanoscale nuclear magnetic resonance and chemical sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. L. Hahn, Physical Review 80, 580 (1950).
  2. H. Y. Carr and E. M. Purcell, Physical Review 94, 630 (1954).
  3. S. Meiboom and D. Gill, Review of Scientific Instruments 29, 688 (1958).
  4. L. Viola, E. Knill, and S. Lloyd, Physical Review Letters 82, 2417 (1999).
  5. G. S. Uhrig, Physical Review Letters 98, 100504 (2007).
  6. T. Yuge, S. Sasaki, and Y. Hirayama, Physical Review Letters 107, 170504 (2011).
  7. L. M. Norris, G. A. Paz-Silva, and L. Viola, Physical Review Letters 116, 150503 (2016).
  8. C. L. Degen, F. Reinhard, and P. Cappellaro, Reviews of Modern Physics 89, 035002 (2017).
  9. A. Ajoy, G. A. Álvarez, and D. Suter, Physical Review A 83, 032303 (2011).
  10. G. A. Álvarez and D. Suter, Physical Review Letters 107, 230501 (2011).
  11. J. R. Harbridge, S. S. Eaton, and G. R. Eaton, Journal of Magnetic Resonance 164, 44 (2003).
  12. G. Mitrikas, E. K. Efthimiadou, and G. Kordas, Physical Chemistry Chemical Physics 16, 2378 (2014).
  13. G. Mitrikas and G. Prokopiou, Journal of Magnetic Resonance 254, 75 (2015).
  14. C. A. Ryan, J. S. Hodges, and D. G. Cory, Physical Review Letters 105, 200402 (2010).
  15. Z.-H. Wang and S. Takahashi, Physical Review B 87, 115122 (2013).
  16. N. Zhao, J. Wrachtrup, and R.-B. Liu, Physical Review A 90, 032319 (2014).
  17. W. K. C. Sun and P. Cappellaro, Physical Review B 106, 155413 (2022).
  18. W. Dong, F. A. Calderon-Vargas, and S. E. Economou, New Journal of Physics 22, 073059 (2020).
  19. M. A. Ali Ahmed, G. A. Álvarez, and D. Suter, Physical Review A 87, 042309 (2013).
  20. W. N. Hardy and L. A. Whitehead, Review of Scientific Instruments 52, 213 (1981).
  21. W. Froncisz and J. S. Hyde, Journal of Magnetic Resonance (1969) 47, 515 (1982).
  22. W. Yang, W.-L. Ma, and R.-B. Liu, Reports on Progress in Physics 80, 016001 (2016).
  23. W. M. Witzel, K. Young, and S. Das Sarma, Physical Review B 90, 115431 (2014).
  24. P. Dutta and P. M. Horn, Reviews of Modern Physics 53, 497 (1981).
  25. V. Stepanov and S. Takahashi, Physical Review B 94, 024421 (2016).
  26. C. P. Slichter, Principles of Magnetic Resonance, 3rd ed., Springer Series in Solid-State Sciences (Springer-Verlag, Berlin Heidelberg, 1990).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube