Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Central Limit Theorems for Smooth Optimal Transport Maps (2312.12407v2)

Published 19 Dec 2023 in math.PR, math.AP, math.ST, and stat.TH

Abstract: One of the central objects in the theory of optimal transport is the Brenier map: the unique monotone transformation which pushes forward an absolutely continuous probability law onto any other given law. A line of recent work has analyzed $L2$ convergence rates of plugin estimators of Brenier maps, which are defined as the Brenier map between density estimators of the underlying distributions. In this work, we show that such estimators satisfy a pointwise central limit theorem when the underlying laws are supported on the flat torus of dimension $d \geq 3$. We also derive a negative result, showing that these estimators do not converge weakly in $L2$ when the dimension is sufficiently large. Our proofs hinge upon a quantitative linearization of the Monge-Amp`ere equation, which may be of independent interest. This result allows us to reduce our problem to that of deriving limit laws for the solution of a uniformly elliptic partial differential equation with a stochastic right-hand side, subject to periodic boundary conditions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.