Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Work and efficiency fluctuations in a quantum Otto cycle with idle levels (2312.12350v2)

Published 19 Dec 2023 in quant-ph

Abstract: We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of `idle' levels, an increase in the inter-spin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. H. T. Quan, Physical Review E 79, 041129 (2009).
  2. C. Elouard and A. N. Jordan, Physical review letters 120, 260601 (2018).
  3. M. Campisi and R. Fazio, Nature communications 7, 1 (2016).
  4. V. Holubec and A. Ryabov, Physical Review E 96, 030102 (2017).
  5. G. Thomas and R. S. Johal, Physical Review E 83, 031135 (2011).
  6. Y. Zheng and D. Poletti, Physical Review E 90, 012145 (2014).
  7. F. Altintas and Ö. E. Müstecaplıoğlu, Physical Review E 92, 022142 (2015).
  8. E. Ivanchenko, Physical Review E 92, 032124 (2015).
  9. S. Chand and A. Biswas, Physical Review E 95, 032111 (2017).
  10. S. Deffner, Entropy 20, 875 (2018).
  11. T. R. de Oliveira and D. Jonathan, Physical Review E 104, 044133 (2021).
  12. T. Denzler and E. Lutz, Physical Review Research 2, 032062 (2020).
  13. T. Denzler and E. Lutz, New Journal of Physics 23, 075003 (2021a).
  14. We adopt the convention that ⟨W⟩<0delimited-⟨⟩𝑊0\langle W\rangle<0⟨ italic_W ⟩ < 0 corresponds to work being extracted from the engine.
  15. M. Campisi, Journal of Physics A: Mathematical and Theoretical 47, 245001 (2014).
  16. G. Upton and I. Cook, A dictionary of statistics 3e (Oxford quick reference, 2014).
  17. A. C. Barato and U. Seifert, Physical review letters 114, 158101 (2015).
  18. K. Proesmans and C. Van den Broeck, Europhysics Letters 119, 20001 (2017).
  19. J. M. Horowitz and T. R. Gingrich, Nature Physics 16, 15 (2020).
  20. R. Alicki, Journal of Physics A: Mathematical and General 12, L103 (1979).
  21. A. E. Allahverdyan, Physical Review E 90, 032137 (2014).
  22. T. Denzler and E. Lutz, Physical Review Research 3, L032041 (2021b).
  23. M. Reis, Fundamentals of magnetism (Elsevier, 2013).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.