Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point Cloud Part Editing: Segmentation, Generation, Assembly, and Selection (2312.11867v1)

Published 19 Dec 2023 in cs.CV

Abstract: Ideal part editing should guarantee the diversity of edited parts, the fidelity to the remaining parts, and the quality of the results. However, previous methods do not disentangle each part completely, which means the edited parts will affect the others, resulting in poor diversity and fidelity. In addition, some methods lack constraints between parts, which need manual selections of edited results to ensure quality. Therefore, we propose a four-stage process for point cloud part editing: Segmentation, Generation, Assembly, and Selection. Based on this process, we introduce SGAS, a model for part editing that employs two strategies: feature disentanglement and constraint. By independently fitting part-level feature distributions, we realize the feature disentanglement. By explicitly modeling the transformation from object-level distribution to part-level distributions, we realize the feature constraint. Considerable experiments on different datasets demonstrate the efficiency and effectiveness of SGAS on point cloud part editing. In addition, SGAS can be pruned to realize unsupervised part-aware point cloud generation and achieves state-of-the-art results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.