Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation (2110.06679v2)

Published 13 Oct 2021 in cs.CV

Abstract: This paper tackles the problem of parts-aware point cloud generation. Unlike existing works which require the point cloud to be segmented into parts a priori, our parts-aware editing and generation are performed in an unsupervised manner. We achieve this with a simple modification of the Variational Auto-Encoder which yields a joint model of the point cloud itself along with a schematic representation of it as a combination of shape primitives. In particular, we introduce a latent representation of the point cloud which can be decomposed into a disentangled representation for each part of the shape. These parts are in turn disentangled into both a shape primitive and a point cloud representation, along with a standardising transformation to a canonical coordinate system. The dependencies between our standardising transformations preserve the spatial dependencies between the parts in a manner that allows meaningful parts-aware point cloud generation and shape editing. In addition to the flexibility afforded by our disentangled representation, the inductive bias introduced by our joint modeling approach yields state-of-the-art experimental results on the ShapeNet dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shidi Li (8 papers)
  2. Miaomiao Liu (43 papers)
  3. Christian Walder (30 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.