Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 451 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Optimal asymptotic lower bound for stability of fractional Sobolev inequality and the stability of Log-Sobolev inequality on the sphere (2312.11787v4)

Published 19 Dec 2023 in math.AP

Abstract: We establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality: \begin{equation}\label{Sob sta ine} \left|(-\Delta){s/2} U \right|22 - \mathcal S{s,n} | U|{\frac{2n}{n-2s}}2\geq C{n,s} d{2}(U, \mathcal{M}s), \end{equation} where $\mathcal{M}_s$ is the set of maximizers of the fractional Sobolev inequality of order $s$, $s\in (0, 1)$ and $C{n,s}$ denotes the optimal lower bound of stability. We prove that the optimal lower bound $C_{n,s}$ behaves asymptotically at the order of $\frac{1}{n}$ when $n\rightarrow +\infty$ for any fixed $s\in (0,1)$. This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss [19] on the stability of the first order Sobolev inequality and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in [15] in the case of $s\in (0, 1)$. Moreover, $C_{n,s}$ behaves asymptotically at the order of $s$ when $s\rightarrow 0$ for any given dimension $n$. (See Theorem 1.1.) As an application of this asymptotic estimate as $s\to 0$ and through the end-point differentiation method, we also derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in [3,4] with the optimal asymptotic lower bound on the sphere. (see Theorem 1.6). This sharpens the earlier work by the authors in [14] where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when $s\to 0$ for fixed dimension $n$ and when $n\to \infty$ for fixed $s\in (0, 1)$ (See Theorem 1.4 and the subsequent Remark 1.5).

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.