Papers
Topics
Authors
Recent
Search
2000 character limit reached

Some Fibonacci-Related Sequences

Published 18 Dec 2023 in math.CO, cs.DM, and cs.FL | (2312.11706v3)

Abstract: We discuss an interesting sequence defined recursively; namely, sequence A105774 from the On-Line Encyclopedia of Integer Sequences, and study some of its properties. Our main tools are Fibonacci representation, finite automata, and the Walnut theorem-prover. We also prove two new results about synchronized sequences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. J. Berstel. Fibonacci words—a survey. In G. Rozenberg and A. Salomaa, editors, The Book of L, pp. 13–27. Springer-Verlag, 1986.
  2. J. Berstel and C. Reutenauer. Noncommutative Rational Series With Applications, Vol. 137 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2011.
  3. Fibonacci representations. Fibonacci Quart. 10 (1972), 1–28.
  4. The minimal automaton recognizing m⁢ℕ𝑚ℕm{\mathbb{N}}italic_m blackboard_N in a linear numeration system. INTEGERS 11B (2011), Paper #A4.
  5. S. W. Golomb. Problem 5407. Amer. Math. Monthly 73 (1966), 674. Solution by D. Marcus and N. J. Fine, 74 (1967), 740–743.
  6. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
  7. C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952), 190–195.
  8. H. Mousavi. Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], available at http://arxiv.org/abs/1603.06017, 2016.
  9. J. Shallit. Synchronized sequences. In T. Lecroq and S. Puzynina, editors, WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science, pp. 1–19. Springer-Verlag, 2021.
  10. J. Shallit. The Logical Approach To Automatic Sequences: Exploring Combinatorics on Words with Walnut, Vol. 482 of London Math. Soc. Lecture Note Series. Cambridge University Press, 2022.
  11. N. J. A. Sloane et al. The on-line encyclopedia of integer sequences, 2023. Available at https://oeis.org.
  12. E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41 (1972), 179–182.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.