2000 character limit reached
Some Fibonacci-Related Sequences (2312.11706v3)
Published 18 Dec 2023 in math.CO, cs.DM, and cs.FL
Abstract: We discuss an interesting sequence defined recursively; namely, sequence A105774 from the On-Line Encyclopedia of Integer Sequences, and study some of its properties. Our main tools are Fibonacci representation, finite automata, and the Walnut theorem-prover. We also prove two new results about synchronized sequences.
- J. Berstel. Fibonacci words—a survey. In G. Rozenberg and A. Salomaa, editors, The Book of L, pp. 13–27. Springer-Verlag, 1986.
- J. Berstel and C. Reutenauer. Noncommutative Rational Series With Applications, Vol. 137 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2011.
- Fibonacci representations. Fibonacci Quart. 10 (1972), 1–28.
- The minimal automaton recognizing mℕ𝑚ℕm{\mathbb{N}}italic_m blackboard_N in a linear numeration system. INTEGERS 11B (2011), Paper #A4.
- S. W. Golomb. Problem 5407. Amer. Math. Monthly 73 (1966), 674. Solution by D. Marcus and N. J. Fine, 74 (1967), 740–743.
- Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
- C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952), 190–195.
- H. Mousavi. Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], available at http://arxiv.org/abs/1603.06017, 2016.
- J. Shallit. Synchronized sequences. In T. Lecroq and S. Puzynina, editors, WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science, pp. 1–19. Springer-Verlag, 2021.
- J. Shallit. The Logical Approach To Automatic Sequences: Exploring Combinatorics on Words with Walnut, Vol. 482 of London Math. Soc. Lecture Note Series. Cambridge University Press, 2022.
- N. J. A. Sloane et al. The on-line encyclopedia of integer sequences, 2023. Available at https://oeis.org.
- E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41 (1972), 179–182.