Papers
Topics
Authors
Recent
Search
2000 character limit reached

On digital sequences associated with Pascal's triangle

Published 17 Jan 2022 in math.NT, cs.DM, cs.FL, and math.CO | (2201.06636v1)

Abstract: We consider the sequence of integers whose $n$th term has base-$p$ expansion given by the $n$th row of Pascal's triangle modulo $p$ (where $p$ is a prime number). We first present and generalize well-known relations concerning this sequence. Then, with the great help of Sloane's On-Line Encyclopedia of Integer Sequences, we show that it appears naturally as a subsequence of a $2$-regular sequence. Its study provides interesting relations and surprisingly involves odious and evil numbers, Nim-sum and even Gray codes. Furthermore, we examine similar sequences emerging from prime numbers involving alternating sum-of-digits modulo~$p$. This note ends with a discussion about Pascal's pyramid involving trinomial coefficients.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.