Nonlocal Approximation of Slow and Fast Diffusion (2312.11438v2)
Abstract: Motivated by recent work on approximation of diffusion equations by deterministic interacting particle systems, we develop a nonlocal approximation for a range of linear and nonlinear diffusion equations and prove convergence of the method in the slow, linear, and fast diffusion regimes. A key ingredient of our approach is a novel technique for using the 2-Wasserstein and dual Sobolev gradient flow structures of the diffusion equations to recover the duality relation characterizing the pressure in the nonlocal-to-local limit. Due to the general class of internal energy densities that our method is able to handle, a byproduct of our result is a novel particle method for sampling a wide range of probability measures, which extends classical approaches based on the Fokker-Planck equation beyond the log-concave setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.