A hybrid approach to long-term binary neutron-star simulations (2312.11358v3)
Abstract: One of the main challenges in the numerical modeling of binary neutron-star (BNS) mergers is long-term simulations of the post-merger remnant over timescales of the order of seconds. When this modeling includes all the aspects of complex physics, the computational costs can easily become enormous. To address this challenge in part, we have developed a novel hybrid approach in which the solution from a general-relativistic magnetohydrodynamics (GRMHD) code solving the full set of the Einstein equations in Cartesian coordinates is coupled with another GRMHD code in which the Einstein equations are solved under the Conformally Flat Condition (CFC). The latter approximation has a long history and has been shown to provide an accurate description of compact objects in non-vacuum spacetimes. An important aspect of the CFC is that the elliptic equations need to be solved only for a fraction of the steps needed for the underlying HD/MHD evolution, thus allowing for a gain in computational efficiency that can be up to a factor of $\sim 6~(230)$ in three-dimensional (two-dimensional) simulations. We present the basic features of the new code, the strategies necessary to interface it when importing both two- and three-dimensional data, and a novel and robust approach to the recovery of the primitive variables. To validate our new framework, we have carried out code tests with various coordinate systems and different numbers of spatial dimensions, involving a variety of astrophysical scenarios, including the evolution of the post-merger remnant of a BNS merger over a timescale of one second. \texttt{BHAC+}, can accurately reproduce the evolution of compact objects in non-vacuum spacetimes and that, when compared with the evolution in full general relativity, the CFC reproduces accurately both the gravitational fields and the matter variables at a fraction of the computational costs.
- The LIGO Scientific Collaboration and The Virgo Collaboration (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- R. Ciolfi, Monthly Notices of the Royal Astronomical Society: Letters 495, L66–L70 (2020).
- S. Smartt and T. e. a. Chen, Nature 551, 75 (2017), arXiv:1710.05841 .
- L. Combi and D. M. Siegel, Astrophys. J. 944, 28 (2023a), arXiv:2206.03618 [astro-ph.HE] .
- L. Baiotti and L. Rezzolla, Rept. Prog. Phys. 80, 096901 (2017), arXiv:1607.03540 [gr-qc] .
- V. Paschalidis, Classical and Quantum Gravity 34, 084002 (2017), arXiv:1611.01519 [astro-ph.HE] .
- L. Combi and D. M. Siegel, arXiv e-prints , arXiv:2303.12284 (2023b), arXiv:2303.12284 [astro-ph.HE] .
- B. Müller, Monthly Notices of the Royal Astronomical Society 453, 287 (2015).
- W. Kastaun and F. Galeazzi, Phys. Rev. D 91, 064027 (2015), arXiv:1411.7975 [gr-qc] .
- M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
- T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1999), gr-qc/9810065 .
- S. Bernuzzi and D. Hilditch, Phys. Rev. D 81, 084003 (2010), arXiv:0912.2920 [gr-qc] .
- J. W. York, Phys. Rev. Lett. 26, 1656 (1971).
- M. Alcubierre, Introduction to 3+1 Numerical Relativity (2006), 10.1093/acprof:oso/9780199205677.001.0001.
- L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013).
- N. Bucciantini and L. Del Zanna, Astron. Astrophys. 528, A101 (2011), arXiv:1010.3532 [astro-ph.IM] .
- G. Faye and G. Schäfer, Physical Review D 68, 084001 (2003).
- LORENE, “Langage objet pour la relativité numérique,” Langage Objet pour la RElativité Numérique, www.lorene.obspm.fr.
- J. Teunissen and R. Keppens, Computer Physics Communications 245, 106866 (2019).
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, 1999).
- P. Londrillo and L. Del Zanna, Journal of Computational Physics 195, 17 (2004).
- C. R. Evans and J. F. Hawley, Astrophys. J. 332, 659 (1988).
- Stellar Collapse Repository, (2017), https://stellarcollapse.org.
- R. P. Brent, Algorithms for Minimization Without Derivatives, reprinted ed. (Dover, New York, 2002).
- J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
- W. Newman and N. Hamlin, SIAM Journal on Scientific Computing 36, B661 (2014), https://doi.org/10.1137/140956749 .
- B. Einfeldt, SIAM J. Numer. Anal. 25, 294 (1988).
- P. Colella and P. R. Woodward, Journal of Computational Physics 54, 174 (1984).
- R. Löhner, Computer Methods in Applied Mechanics and Engineering 61, 323 (1987).
- P. Cerdá-Durán, Classical and Quantum Gravity 27, 205012 (2010), arXiv:0912.1774 [astro-ph.SR] .
- M. Chabanov and L. Rezzolla, arXiv e-prints , arXiv:2307.10464 (2023), arXiv:2307.10464 [gr-qc] .
- K. Kiuchi and S. Yoshida, Phys. Rev. D 78, 044045 (2008), arXiv:0802.2983 .
- M. Hempel and J. Schaffner-Bielich, Nuclear Physics A 837, 210 (2010), arXiv:0911.4073 [nucl-th] .
- N. Stergioulas and J. L. Friedman, Astrophys. J. 444, 306 (1995), astro-ph/9411032 .
- C. Musolino and L. Rezzolla, arXiv e-prints , arXiv:2304.09168 (2023), arXiv:2304.09168 [gr-qc] .
- W. E. East and F. Pretorius, Phys. Rev. Lett. 110, 101101 (2013), arXiv:1210.0443 [gr-qc] .
- L. Rezzolla and K. Takami, Class. Quantum Grav. 30, 012001 (2013), arXiv:1209.6138 [gr-qc] .
- P. Grandclement, J. Comput. Phys. 229, 3334 (2010), arXiv:0909.1228 [gr-qc] .
- S. Tootle, Probing extreme configurations in binary compact object mergers, doctoralthesis, Universitätsbibliothek Johann Christian Senckenberg (2023).
- H. P. Pfeiffer and J. W. York, Phys. Rev. Lett. 95, 091101 (2005), arXiv:gr-qc/0504142 [gr-qc] .
- S. Tootle and L. Rezzolla, in preparation (2024), arXiv:in preparation .
- D. Radice and L. Rezzolla, Astron. Astrophys. 547, A26 (2012), arXiv:1206.6502 [astro-ph.IM] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.