Disentangling photon rings beyond General Relativity with future radio-telescope arrays (2312.11351v2)
Abstract: New physics beyond General Relativity can modify image features of black holes and horizonless spacetimes and increase the separation between photon rings. This motivates us to explore synthetic images consisting of two thin rings. Our synthetic images are parameterized by the separation as well as the relative flux density of the two rings. We perform fits to the visibility amplitude and analyze closure quantities. The current Event Horizon Telescope array cannot detect the presence of a second ring in the region of parameters motivated by particular new-physics cases. We show that this can be improved in three ways: first, if the array is upgraded with Earth-based telescopes with sufficiently high sensitivity, second, if the array is upgraded with a space-based station and third, if super-resolution techniques are used for the data obtained by the array.
- Quantum phase transitions and the breakdown of classical general relativity. Int. J. Mod. Phys. A, 18:3587–3590, 2003.
- Gravitational Condensate Stars: An Alternative to Black Holes. Universe, 9(2):88, 2023.
- Samir D. Mathur. The Fuzzball proposal for black holes: An Elementary review. Fortsch. Phys., 53:793–827, 2005.
- Black Holes: Complementarity or Firewalls? JHEP, 02:062, 2013.
- Mutiny at the white-hole district. Int. J. Mod. Phys. D, 23(12):1442022, 2014.
- Planck stars. Int. J. Mod. Phys. D, 23(12):1442026, 2014.
- Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D, 92(10):104020, 2015.
- The lifetime problem of evaporating black holes: mutiny or resignation. Class. Quant. Grav., 32(3):035012, 2015.
- Where does the physics of extreme gravitational collapse reside? Universe, 2(2):7, 2016.
- Quantum Gravity Effects around Sagittarius A*. Int. J. Mod. Phys. D, 25(12):1644021, 2016.
- Fuzzball Shadows: Emergent Horizons from Microstructure. Phys. Rev. Lett., 127(17):171601, 2021.
- Quantum gravity lights up spinning black holes. JCAP, 01:032, 2023.
- Fuzzballs and Microstate Geometries: Black-Hole Structure in String Theory. 4 2022.
- Breaking black-hole uniqueness at supermassive scales. 2023.
- B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019.
- Gabriella Agazie et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett., 951(1):L8, 2023.
- Freek Roelofs et al. The ngEHT Analysis Challenges. Galaxies, 11(1):12, 2023.
- Michael D. Johnson et al. Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies, 11:61, 2023.
- D. Ayzenberg et al. Fundamental Physics Opportunities with the Next-Generation Event Horizon Telescope. 12 2023.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022.
- Imaging a non-singular rotating black hole at the center of the Galaxy. Class. Quant. Grav., 35(11):115009, 2018.
- Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object. Astron. Astrophys., 646:A37, 2021.
- Photon ring structure of rotating regular black holes and no-horizon spacetimes. Class. Quant. Grav., 38(8):8, 2021.
- Image features of spinning regular black holes based on a locality principle. Eur. Phys. J. C, 81(10):933, 2021.
- From a locality-principle for new physics to image features of regular spinning black holes with disks. JCAP, 05:073, 2021.
- Universal signatures of singularity-resolving physics in photon rings of black holes and horizonless objects. JCAP, 01:043, 2023.
- Rahul Kumar Walia. Observational predictions of LQG motivated polymerized black holes and constraints from Sgr A* and M87*. JCAP, 03:029, 2023.
- Yi Ling and Meng-He Wu. The Shadows of Regular Black Holes with Asymptotic Minkowski Cores. Symmetry, 14(11):2415, 2022.
- Investigating Loop Quantum Gravity with Event Horizon Telescope Observations of the Effects of Rotating Black Holes. Astrophys. J., 943(1):22, 2023.
- Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D, 96(10):104040, 2017.
- Horizonless Spacetimes As Seen by Present and Next-generation Event Horizon Telescope Arrays. Astrophys. J., 950(2):117, 2023.
- Multiring images of thin accretion disk of a regular naked compact object. Phys. Rev. D, 106(4):044070, 2022.
- Toward very large baseline interferometry observations of black hole structure. Phys. Rev. D, 106(8):084038, 2022.
- Light ring images of double photon spheres in black hole and wormhole spacetimes. Phys. Rev. D, 105(8):084057, 2022.
- Shadows and photon rings of regular black holes and geonic horizonless compact objects. Class. Quant. Grav., 40(17):174002, 2023.
- The shadow of charged traversable wormholes. Int. J. Mod. Phys. D, 32(02):2250137, 2023.
- Image of the thin accretion disk around compact objects in the Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C, 81(10):885, 2021.
- Kerr black holes with synchronised Proca hair: lensing, shadows and EHT constraints. JCAP, 01:047, 2023.
- Separating astrophysics and geometry in black hole images. Phys. Rev. D, 104(12):124041, 2021.
- Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry. Mon. Not. Roy. Astron. Soc., 513(1):1229–1243, 2022.
- Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J., 942(1):47, 2023.
- Charles Galton Darwin. The gravity field of a particle. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 249(1257):180–194, 1959.
- Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J., 178:347, 1972.
- J. P. Luminet. Image of a spherical black hole with thin accretion disk. Astron. Astrophys., 75:228–235, 1979.
- Black Hole Shadows, Photon Rings, and Lensing Rings. Phys. Rev. D, 100(2):024018, 2019.
- Michael D. Johnson et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv., 6(12):eaaz1310, 2020.
- Prediction for the interferometric shape of the first black hole photon ring. Phys. Rev. D, 108(6):064043, 2023.
- GS Bisnovatyi-Kogan and AA Ruzmaikin. The accretion of matter by a collapsing star in the presence of a magnetic field. Astrophysics and Space Science, 28:45–59, 1974.
- Three-dimensional mhd simulations of radiatively inefficient accretion flows. Astrophys. J., 592:1042–1059, 2003.
- Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jap., 55:L69, 2003.
- Magnetically driven accretion flows in the kerr metric I: models and overall structure. Astrophys. J., 599:1238, 2003.
- HARM: A Numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J., 589:444–457, 2003.
- GRMHD Simulations of Magnetized Advection-Dominated Accretion on a Non-Spinning Black Hole: Role of Outflows. Mon. Not. Roy. Astron. Soc., 426:3241, 2012.
- Measuring Spin from Relative Photon-ring Sizes. Astrophys. J., 927(1):6, 2022.
- B. P. Abbott et al. Tests of General Relativity with GW170817. Phys. Rev. Lett., 123(1):011102, 2019.
- B. P. Abbott et al. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D, 100(10):104036, 2019.
- R. Abbott et al. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D, 103(12):122002, 2021.
- R. Abbott et al. Tests of General Relativity with GWTC-3. 12 2021.
- Nan Jiang. Testing General Relativity With Gravitational Waves From Compact Binaries. PhD thesis, Virginia U., 2023.
- Black Holes in Higher-Derivative Gravity. Phys. Rev. Lett., 114(17):171601, 2015.
- Pedro G. S. Fernandes. Rotating black holes in semiclassical gravity. Phys. Rev. D, 108(6):L061502, 2023.
- New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories. Phys. Rev. Lett., 120(13):131103, 2018.
- Spin-induced black hole spontaneous scalarization. Phys. Rev. Lett., 125(23):231101, 2020.
- Scalarization. 11 2022.
- Towards numerical relativity in scalar Gauss-Bonnet gravity: 3+1313+13 + 1 decomposition beyond the small-coupling limit. Phys. Rev. D, 101(12):124055, 2020.
- Dynamical Descalarization in Binary Black Hole Mergers. Phys. Rev. Lett., 127(3):031101, 2021.
- Nonlinear studies of binary black hole mergers in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D, 107(2):024014, 2023.
- Nonlinear evolution of quadratic gravity in 3+1 dimensions. Phys. Rev. D, 108(10):104025, 2023.
- Frans Pretorius. Evolution of binary black hole spacetimes. Phys. Rev. Lett., 95:121101, 2005.
- Extraction of Gravitational Waves in Numerical Relativity. Living Rev. Rel., 19:2, 2016.
- Avery E. Broderick et al. The Photon Ring in M87*. Astrophys. J., 935:61, 2022.
- Images and photon ring signatures of thick disks around black holes. Astron. Astrophys., 667:A170, 2022.
- Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D, 101(8):084020, 2020.
- Photon ring test of the Kerr hypothesis: Variation in the ring shape. Astron. Astrophys., 668:A11, 2022.
- Measuring Photon Rings with the ngEHT. Galaxies, 10(6):111, 2022.
- How narrow is the M87* ring – II. A new geometric model. Mon. Not. Roy. Astron. Soc., 517(2):2462–2470, 2022.
- Maciek Wielgus. Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys. Rev. D, 104(12):124058, 2021.
- Black hole photon rings beyond general relativity. Phys. Rev. D, 107(12):124026, 2023.
- Dimitry Ayzenberg. Testing gravity with black hole shadow subrings. Class. Quant. Grav., 39(10):105009, 2022.
- A Lensing-Band Approach to Spacetime Constraints. 12 2023.
- Renormalization group improved black hole space-times. Phys. Rev. D, 62:043008, 2000.
- Black Holes and Asymptotically Safe Gravity. Int. J. Mod. Phys. A, 27:1250019, 2012.
- Alessia Platania. Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C, 79(6):470, 2019.
- Black holes in asymptotically safe gravity and beyond. 12 2022.
- Alessia Platania. Black Holes in Asymptotically Safe Gravity. 2 2023.
- Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav., 23:391–411, 2006.
- Leonardo Modesto. Loop quantum black hole. Class. Quant. Grav., 23:5587–5602, 2006.
- Loop quantization of spherically symmetric midi-superspaces : The Interior problem. AIP Conf. Proc., 977(1):52–63, 2008.
- Regular black holes from Loop Quantum Gravity. 1 2023.
- Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett., 80:5056–5059, 1998.
- New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B, 464:25, 1999.
- Kirill A. Bronnikov. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D, 63:044005, 2001.
- Kirill A. Bronnikov. Regular black holes sourced by nonlinear electrodynamics. 11 2022.
- Regular black holes via the Kerr-Schild construction in DHOST theories. JCAP, 06:049, 2020.
- Regular black holes and gravitational particle-like solutions in generic DHOST theories. JCAP, 06:021, 2021.
- Sean A. Hayward. Formation and evaporation of regular black holes. Phys. Rev. Lett., 96:031103, 2006.
- Black-bounce to traversable wormhole. JCAP, 02:042, 2019.
- Geodesically complete black holes. Phys. Rev. D, 101:084047, 2020.
- A novel family of rotating black hole mimickers. JCAP, 04:082, 2021.
- The eye of the storm: a regular Kerr black hole. JCAP, 03(03):011, 2022.
- Singularity-free gravitational collapse: From regular black holes to horizonless objects. 1 2023.
- C. Bambi, editor. Regular black holes: Towards a new paradigm of gravitational collapse. Springer, 2023.
- On the viability of regular black holes. JHEP, 07:023, 2018.
- Regular black holes without mass inflation instability. JHEP, 09:118, 2022.
- Stable rotating regular black holes. Phys. Rev. D, 106(10):104060, 2022.
- Inner horizon instability and the unstable cores of regular black holes. JHEP, 05:132, 2021.
- Regular black holes with stable cores. Phys. Rev. D, 103(12):124027, 2021.
- Classical mass inflation versus semiclassical inner horizon inflation. Phys. Rev. D, 106(12):124006, 2022.
- On the Inner Horizon Instability of Non-Singular Black Holes. Universe, 8(4):204, 2022.
- Regular evaporating black holes with stable cores. Phys. Rev. D, 107(2):024005, 2023.
- Comment on ”Stability properties of Regular Black Holes”. 12 2022.
- Parameterizations of black-hole spacetimes beyond circularity. Class. Quant. Grav., 39(13):134002, 2022.
- Achille Papapetrou. Champs gravitationnels stationnaires a symetrie axiale. Ann. Inst. H. Poincare Phys. Theor., 4:83–105, 1966.
- H. Weyl. The theory of gravitation. Annalen Phys., 54:117–145, 1917.
- T. Lewis. Some speical solutions to the equations of axially symmetric gravitational fields. Proc. Roy. Soc. Lond. A, 136:179–192, 1932.
- General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D, 93(6):064015, 2016.
- S. Benenti and M. Francaviglia. Remarks on certain separability structures and their applications to general relativity. Gen. Rel. Grav., 10(1):79–92, 1979.
- Tim Johannsen. Regular Black Hole Metric with Three Constants of Motion. Phys. Rev. D, 88(4):044002, 2013.
- Bumpy Black Holes in Alternate Theories of Gravity. Phys. Rev. D, 83:104027, 2011.
- Clifford M. Will. Theory and Experiment in Gravitational Physics. 1993.
- Raúl Carballo-Rubio. Stellar equilibrium in semiclassical gravity. Phys. Rev. Lett., 120(6):061102, 2018.
- Semiclassical relativistic stars. Sci. Rep., 12(1):15958, 2022.
- A connection between regular black holes and horizonless ultracompact stars. JHEP, 08:046, 2023.
- Gravitational antiscreening in stellar interiors. JCAP, 01:022, 2020.
- Shadows of spherically symmetric black holes and naked singularities. Mon. Not. Roy. Astron. Soc., 482(1):52–64, 2019.
- Observational signatures of strongly naked singularities: image of the thin accretion disk. Eur. Phys. J. C, 80(11):1017, 2020.
- A geometric crescent model for black hole images. Mon. Not. Roy. Astron. Soc., 434:765, 2013.
- Andrew Chael. eht-imaging, October 2023.
- Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys. J., 857(1):23, 2018.
- Freek Roelofs et al. Simulations of imaging the event horizon of Sagittarius A* from space. Astron. Astrophys., 625:A124, 2019.
- Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope. Galaxies, 11(5):107, October 2023.
- Avery Broderick. ngehtexplorer.
- LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, September 2014.
- Dos and don’ts of reduced chi-squared. arXiv e-prints, page arXiv:1012.3754, December 2010.
- Interferometry and Synthesis in Radio Astronomy, 3rd Edition. 2017.
- How narrow is the M87* ring? I. The choice of closure likelihood function. Mon. Not. Roy. Astron. Soc., 509(3):3643–3659, 2021.
- A. Lapidoth. A Foundation in Digital Communication. Cambridge University Press, 2017.
- Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. ApJ, 857(1):23, April 2018.
- R. C. Jennison. A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. Mon. Not. Roy. Astron. Soc., 118:276, January 1958.
- Brightness distribution over some strong radio sources at 1427 Mc/s. The Observatory, 80:153–159, August 1960.
- The structure of radio sources 3C 273B and 3C 84 deduced from the “closure” phases and visibility amplitudes observed with three-element interferometers. Astrophys. J., 193:293–301, October 1974.
- Mapping radio sources with uncalibrated visibility data. Nature, 285(5761):137–140, May 1980.
- S. S. Doeleman et al. Structure of sagittarius a* at 86 ghz using vlbi closure quantities. Astron. J., 121:2610, 2001.
- Vincent L. Fish et al. Persistent Asymmetric Structure of Sagittarius A* on Event Horizon Scales. Astrophys. J., 820(2):90, 2016.
- A. Lannes. Phase and amplitude calibration in aperture synthesis. Algebraic structures. Inverse Problems, 7(2):261–298, April 1991.
- Closure Traces: Novel Calibration-insensitive Quantities for Radio Astronomy. Astrophys. J., 904(2):126, December 2020.
- Invariants in Polarimetric Interferometry: A Non-Abelian Gauge Theory. Phys. Rev. Lett., 128(9):091101, 2022.
- Invariants in copolar interferometry: An Abelian gauge theory. Phys. Rev. D, 105(4):043019, February 2022.
- J. D. Monnier. Astrophysics with Closure Phases. In G. Perrin and F. Malbet, editors, EAS Publications Series, volume 6 of EAS Publications Series, page 213, January 2003.
- Closure Statistics in Interferometric Data. Astrophys. J., 894(1):31, May 2020.
- Hybrid Very Long Baseline Interferometry Imaging and Modeling with themis. Astrophys. J., 898(1):9, 2020.
- J. W. Isbell et al. The dusty heart of Circinus. I. Imaging the circumnuclear dust in N-band. Astron. Astrophys., 663:A35, July 2022.
- Handbook of mathematical functions with formulas, graphs, and mathematical tables. 1965.
- Leonid I. Gurvits et al. THEZA: TeraHertz Exploration and Zooming-in for Astrophysics: An ESA Voyage 2050 White Paper. Exper. Astron., 51(3):559–594, 2021.
- Imaging black holes and jets with a VLBI array including multiple space-based telescopes. Adv. Space Res., 65:821–830, 2020.
- Kari Haworth et al. Studying black holes on horizon scales with space-VLBI. 9 2019.
- Metrics and motivations for earth–space vlbi: Time-resolving sgr a* with the event horizon telescope. The Astrophysical Journal, 881(1):62, 2019.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.