Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEIR: Concept-based Explainable Image Representation Learning (2312.10747v1)

Published 17 Dec 2023 in cs.CV and cs.LG

Abstract: In modern machine learning, the trend of harnessing self-supervised learning to derive high-quality representations without label dependency has garnered significant attention. However, the absence of label information, coupled with the inherently high-dimensional nature, improves the difficulty for the interpretation of learned representations. Consequently, indirect evaluations become the popular metric for evaluating the quality of these features, leading to a biased validation of the learned representation rationale. To address these challenges, we introduce a novel approach termed Concept-based Explainable Image Representation (CEIR). Initially, using the Concept-based Model (CBM) incorporated with pretrained CLIP and concepts generated by GPT-4, we project input images into a concept vector space. Subsequently, a Variational Autoencoder (VAE) learns the latent representation from these projected concepts, which serves as the final image representation. Due to the capability of the representation to encapsulate high-level, semantically relevant concepts, the model allows for attributions to a human-comprehensible concept space. This not only enhances interpretability but also preserves the robustness essential for downstream tasks. For instance, our method exhibits state-of-the-art unsupervised clustering performance on benchmarks such as CIFAR10, CIFAR100, and STL10. Furthermore, capitalizing on the universality of human conceptual understanding, CEIR can seamlessly extract the related concept from open-world images without fine-tuning. This offers a fresh approach to automatic label generation and label manipulation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yan Cui (31 papers)
  2. Shuhong Liu (13 papers)
  3. Liuzhuozheng Li (4 papers)
  4. Zhiyuan Yuan (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.