Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Knowledge Trees: Gradient Boosting Decision Trees on Knowledge Neurons as Probing Classifier (2312.10746v1)

Published 17 Dec 2023 in cs.CL, cs.AI, and cs.LG

Abstract: To understand how well a LLM captures certain semantic or syntactic features, researchers typically apply probing classifiers. However, the accuracy of these classifiers is critical for the correct interpretation of the results. If a probing classifier exhibits low accuracy, this may be due either to the fact that the LLM does not capture the property under investigation, or to shortcomings in the classifier itself, which is unable to adequately capture the characteristics encoded in the internal representations of the model. Consequently, for more effective diagnosis, it is necessary to use the most accurate classifiers possible for a particular type of task. Logistic regression on the output representation of the transformer neural network layer is most often used to probing the syntactic properties of the LLM. We show that using gradient boosting decision trees at the Knowledge Neuron layer, i.e., at the hidden layer of the feed-forward network of the transformer as a probing classifier for recognizing parts of a sentence is more advantageous than using logistic regression on the output representations of the transformer layer. This approach is also preferable to many other methods. The gain in error rate, depending on the preset, ranges from 9-54%

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)