Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generic Stochastic Hybrid Car-following Model Based on Approximate Bayesian Computation (2312.10042v1)

Published 27 Nov 2023 in cs.LG and cs.RO

Abstract: Car following (CF) models are fundamental to describing traffic dynamics. However, the CF behavior of human drivers is highly stochastic and nonlinear. As a result, identifying the best CF model has been challenging and controversial despite decades of research. Introduction of automated vehicles has further complicated this matter as their CF controllers remain proprietary, though their behavior appears different than human drivers. This paper develops a stochastic learning approach to integrate multiple CF models, rather than relying on a single model. The framework is based on approximate Bayesian computation that probabilistically concatenates a pool of CF models based on their relative likelihood of describing observed behavior. The approach, while data-driven, retains physical tractability and interpretability. Evaluation results using two datasets show that the proposed approach can better reproduce vehicle trajectories for both human driven and automated vehicles than any single CF model considered.

Citations (3)

Summary

We haven't generated a summary for this paper yet.