Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling (2312.09831v2)

Published 15 Dec 2023 in nlin.CD

Abstract: Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles. The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced in [Munyayev {\it et al.}, Phys. Rev. Lett. 130, 107021 (2023)], where we explored the surprising prevalence of such states in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our analysis to understand the mechanisms responsible for destroying the cyclops' states and inducing new dynamical patterns called breathing and switching cyclops' states. We first analytically study the existence and stability of cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks, breathing and switching cyclops states promise to strongly manifest in other physical and biological networks, including coupled theta-neurons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, Methods in neuronal modeling 2, 251 (1998).
  2. G. B. Ermentrout and D. Kleinfeld, Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role, Neuron 29, 33 (2001).
  3. F. C. Hoppensteadt and E. M. Izhikevich, Weakly connected neural networks, Vol. 126 (Springer Science & Business Media, 2012).
  4. G. Kozyreff, A. Vladimirov, and P. Mandel, Global coupling with time delay in an array of semiconductor lasers, Physical Review Letters 85, 3809 (2000).
  5. F. Dörfler, M. Chertkov, and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences 110, 2005 (2013).
  6. R. Berner, S. Yanchuk, and E. Schöll, What adaptive neuronal networks teach us about power grids, Physical Review E 103, 042315 (2021a).
  7. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics (Springer, 1975) pp. 420–422.
  8. S. H. Strogatz, From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena 143, 1 (2000).
  9. B. Ermentrout, An adaptive model for synchrony in the firefly pteroptyx malaccae, Journal of Mathematical Biology  (1997).
  10. E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 037113 (2008).
  11. A. Pikovsky and M. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators, Physical Review Letters 101, 264103 (2008).
  12. F. Dörfler and F. Bullo, On the critical coupling for kuramoto oscillators, SIAM Journal on Applied Dynamical Systems 10, 1070 (2011).
  13. H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems, Physical Review Letters 78, 2104 (1997a).
  14. H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses, Physica D: Nonlinear Phenomena 100, 279 (1997b).
  15. M. Komarov, S. Gupta, and A. Pikovsky, Synchronization transitions in globally coupled rotors in the presence of noise and inertia: Exact results, EPL (Europhysics Letters) 106, 40003 (2014).
  16. P. S. Skardal and A. Arenas, Disorder induces explosive synchronization, Physical Review E 89, 062811 (2014).
  17. T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry, Physical Review Letters 117, 114101 (2016).
  18. Z. G. Nicolaou, D. Eroglu, and A. E. Motter, Multifaceted dynamics of janus oscillator networks, Physical Review X 9, 011017 (2019).
  19. Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenomena in Complex Systems 5, 380 (2002).
  20. D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Physical Review Letters 93, 174102 (2004).
  21. M. J. Panaggio and D. M. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28, R67 (2015).
  22. A. Zakharova, M. Kapeller, and E. Schöll, Chimera death: Symmetry breaking in dynamical networks, Physical Review Letters 112, 154101 (2014).
  23. M. Bolotov, G. Osipov, and A. Pikovsky, Marginal chimera state at cross-frequency locking of pulse-coupled neural networks, Physical Review E 93, 032202 (2016).
  24. P. Jaros, Y. Maistrenko, and T. Kapitaniak, Chimera states on the route from coherence to rotating waves, Physical Review E 91, 022907 (2015).
  25. E. Teichmann and M. Rosenblum, Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 093124 (2019).
  26. I. V. Belykh, B. N. Brister, and V. N. Belykh, Bistability of patterns of synchrony in kuramoto oscillators with inertia, Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094822 (2016).
  27. B. N. Brister, V. N. Belykh, and I. V. Belykh, When three is a crowd: Chaos from clusters of kuramoto oscillators with inertia, Physical Review E 101, 062206 (2020).
  28. R. Ronge and M. A. Zaks, Splay states and two-cluster states in ensembles of excitable units, The European Physical Journal Special Topics 230, 2717 (2021).
  29. I. Belykh and A. Shilnikov, When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons, Physical Review Letters 101, 078102 (2008).
  30. I. Belykh, R. Reimbayev, and K. Zhao, Synergistic effect of repulsive inhibition in synchronization of excitatory networks, Physical Review E 91, 062919 (2015).
  31. P. Seliger, S. C. Young, and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Physical Review E 65, 041906 (2002).
  32. R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators, Physical Review E 80, 066213 (2009).
  33. I. Z. Kiss, Y. Zhai, and J. L. Hudson, Predicting mutual entrainment of oscillators with experiment-based phase models, Physical Review Letters 94, 248301 (2005).
  34. M. Komarov and A. Pikovsky, Multiplicity of singular synchronous states in the kuramoto model of coupled oscillators, Physical Review Letters 111, 204101 (2013).
  35. R. Berner, A. Lu, and I. M. Sokolov, Synchronization transitions in kuramoto networks with higher-mode interaction, Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 073138 (2023).
  36. P. S. Skardal, E. Ott, and J. G. Restrepo, Cluster synchrony in systems of coupled phase oscillators with higher-order coupling, Physical Review E 84, 036208 (2011).
  37. R. J. Goldschmidt, A. Pikovsky, and A. Politi, Blinking chimeras in globally coupled rotators, Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019).
  38. H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Physical Review E 73, 031907 (2006).
  39. H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators, Progress of Theoretical Physics 88, 1213 (1992).
  40. D. N. Bernshtein, The number of roots of a system of equations, Funktsional’nyi Analiz i Ego Prilozheniya 9, 1 (1975).
  41. C. Xu and P. S. Skardal, Spectrum of extensive multiclusters in the kuramoto model with higher-order interactions, Physical Review Research 3, 013013 (2021).
  42. A. P. Millán, J. J. Torres, and G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes, Physical Review Letters 124, 218301 (2020).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com