Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The von Neumann extension theory for abstract Friedrichs operators (2312.09618v2)

Published 15 Dec 2023 in math.AP and math.FA

Abstract: The theory of abstract Friedrichs operators was introduced some fifteen years ago with the aim of providing a more comprehensive framework for the study of positive symmetric systems of first-order partial differential equations, nowadays better known as (classical) Friedrichs systems. Since then, the theory has not only been frequently applied in numerical and analytical research of Friedrichs systems, but has continued to evolve as well. In this paper, we provide an explicit characterisation and a classification of abstract Friedrichs operators. More precisely, we show that every abstract Friedrichs operator can be written as the sum of a skew-symmetric operator and a bounded self-adjoint strictly positive operator. Furthermore, we develop a classification of realisations of abstract Friedrichs operators in the spirit of the von Neumann extension theory, which, when applied to the symmetric case, extends the classical theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.