Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Photonic fusion of entangled resource states from a quantum emitter (2312.09070v1)

Published 14 Dec 2023 in quant-ph

Abstract: Fusion-based photonic quantum computing architectures rely on two primitives: i) near-deterministic generation and control of constant-size entangled states and ii) probabilistic entangling measurements (photonic fusion gates) between entangled states. Here, we demonstrate these key functionalities by fusing resource states deterministically generated using a solid-state spin-photon interface. Repetitive operation of the source leads to sequential entanglement generation, whereby curiously entanglement is created between the quantum states of the same spin at two different instances in time. Such temporal multiplexing of photonic entanglement provides a resource-efficient route to scaling many-body entangled systems with photons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. R. Raussendorf, J. Harrington, and K. Goyal, A fault-tolerant one-way quantum computer, Annals of Physics 321, 2242 (2006).
  2. D. E. Browne and T. Rudolph, Resource-efficient linear optical quantum computation, Phys. Rev. Lett. 95, 010501 (2005).
  3. T. J. Bell, L. A. Pettersson, and S. Paesani, Optimizing graph codes for measurement-based loss tolerance, PRX Quantum 4, 020328 (2023).
  4. K. Sahay, J. Claes, and S. Puri, Tailoring fusion-based error correction for high thresholds to biased fusion failures, Phys. Rev. Lett. 131, 120604 (2023).
  5. S. Paesani and B. J. Brown, High-threshold quantum computing by fusing one-dimensional cluster states, Phys. Rev. Lett. 131, 120603 (2023).
  6. A. L. Migdall, D. Branning, and S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source, Phys. Rev. A 66, 053805 (2002).
  7. N. H. Lindner and T. Rudolph, Proposal for pulsed on-demand sources of photonic cluster state strings, Phys. Rev. Lett. 103, 113602 (2009).
  8. S. E. Economou, N. Lindner, and T. Rudolph, Optically generated 2-dimensional photonic cluster state from coupled quantum dots, Phys. Rev. Lett. 105, 093601 (2010).
  9. D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
  10. M. C. Löbl, S. Paesani, and A. S. Sørensen, Loss-tolerant architecture for quantum computing with quantum emitters, arXiv preprint arXiv:2304.03796  (2023).
  11. Data underlying the results presented in this paper are available at 10.6084/m9.figshare.22086080.
Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com