Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EAT: Towards Long-Tailed Out-of-Distribution Detection (2312.08939v1)

Published 14 Dec 2023 in cs.LG and cs.CV

Abstract: Despite recent advancements in out-of-distribution (OOD) detection, most current studies assume a class-balanced in-distribution training dataset, which is rarely the case in real-world scenarios. This paper addresses the challenging task of long-tailed OOD detection, where the in-distribution data follows a long-tailed class distribution. The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes, as the ability of a classifier to detect OOD instances is not strongly correlated with its accuracy on the in-distribution classes. To overcome this issue, we propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes. This approach allows us to build a detector with clear decision boundaries by training on OOD data using virtual labels. (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data. This technique encourages the model to pay more attention to the discriminative features of the tail classes. We provide a clue for separating in-distribution and OOD data by analyzing gradient noise. Through extensive experiments, we demonstrate that our method outperforms the current state-of-the-art on various benchmark datasets. Moreover, our method can be used as an add-on for existing long-tail learning approaches, significantly enhancing their OOD detection performance. Code is available at: https://github.com/Stomach-ache/Long-Tailed-OOD-Detection .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tong Wei (36 papers)
  2. Bo-Lin Wang (1 paper)
  3. Min-Ling Zhang (31 papers)
Citations (7)