Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen Out-of-Distribution Classes (2210.06833v1)

Published 13 Oct 2022 in cs.LG

Abstract: Out-of-Distribution (OOD) detection is essential in real-world applications, which has attracted increasing attention in recent years. However, most existing OOD detection methods require many labeled In-Distribution (ID) data, causing a heavy labeling cost. In this paper, we focus on the more realistic scenario, where limited labeled data and abundant unlabeled data are available, and these unlabeled data are mixed with ID and OOD samples. We propose the Adaptive In-Out-aware Learning (AIOL) method, in which we employ the appropriate temperature to adaptively select potential ID and OOD samples from the mixed unlabeled data and consider the entropy over them for OOD detection. Moreover, since the test data in realistic applications may contain OOD samples whose classes are not in the mixed unlabeled data (we call them unseen OOD classes), data augmentation techniques are brought into the method to further improve the performance. The experiments are conducted on various benchmark datasets, which demonstrate the superiority of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yi-Xuan Sun (1 paper)
  2. Wei Wang (1793 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.