Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Block encoding of matrix product operators (2312.08861v3)

Published 14 Dec 2023 in quant-ph

Abstract: Quantum signal processing combined with quantum eigenvalue transformation has recently emerged as a unifying framework for several quantum algorithms. In its standard form, it consists of two separate routines: block encoding, which encodes a Hamiltonian in a larger unitary, and signal processing, which achieves an almost arbitrary polynomial transformation of such a Hamiltonian using rotation gates. The bottleneck of the entire operation is typically constituted by block encoding and, in recent years, several problem-specific techniques have been introduced to overcome this problem. Within this framework, we present a procedure to block-encode a Hamiltonian based on its matrix product operator (MPO) representation. More specifically, we encode every MPO tensor in a larger unitary of dimension $D+2$, where $D = \lceil\log(\chi)\rceil$ is the number of subsequently contracted qubits that scales logarithmically with the virtual bond dimension $\chi$. Given any system of size $L$, our method requires $L+D$ ancillary qubits in total, while the number of one- and two-qubit gates decomposing the block encoding circuit scales as $\mathcal{O}(L\cdot\chi2)$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.