Bayesian Fused Lasso Modeling for Binary Data (2312.08838v1)
Abstract: L1-norm regularized logistic regression models are widely used for analyzing data with binary response. In those analyses, fusing regression coefficients is useful for detecting groups of variables. This paper proposes a binomial logistic regression model with Bayesian fused lasso. Assuming a Laplace prior on regression coefficients and differences between adjacent regression coefficients enables us to perform variable selection and variable fusion simultaneously in the Bayesian framework. We also propose assuming a horseshoe prior on the differences to improve the flexibility of variable fusion. The Gibbs sampler is derived to estimate the parameters by a hierarchical expression of priors and a data-augmentation method. Using simulation studies and real data analysis, we compare the proposed methods with the existing method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.