Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Exact Critical Exponents from the low-order loop expansion of the Effective Potential in Quantum Field Theory (2312.08795v2)

Published 14 Dec 2023 in hep-th

Abstract: The asymptotic strong-coupling behavior as well as the exact critical exponents from scalar field theory even in the simplest case of $1+1$ dimensions have not been obtained yet. Hagen Kleinert has linked both critical exponents and strong coupling parameters to each other. He used a clevert variational technique ( back to kleinert and Feynman) to extract accurate values for the strong coupling parameters from which he was able to extract precise critical exponents. In this work, we suggest a simple method of using the effective potential (low-order) to obtain exact values for the strong-coupling parameters for the $\phi{4}$ scalar field theory in $0+1$ and $1+1$ space-time dimensions. For the $0+1$ case, our results coincide with the well-known exact values from literature while for the $1+1$ case we test the results by obtaining the corresponding exact critical exponent. As the effective potential is a well-established tool in quantum field theory, we expect that the results can be easily extended to the most important three dimensional case and then the dream of getting exact critical exponents is made possible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. T. Hollowood, Renormalization Group and Fixed Points: In Quantum Field Theory (2013).
  2. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -Theories (WORLD SCIENTIFIC, 2001).
  3. A. M. Shalaby, λ𝜆\lambdaitalic_λ-point anomaly in view of the seven-loop hypergeometric resummation for the critical exponent ν𝜈\nuitalic_ν of the O(2) ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model, Phys. Rev. D 102, 105017 (2020a).
  4. A. M. Shalaby, Critical exponents of the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N )-symmetric ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model from the ε7superscript𝜀7\varepsilon^{7}italic_ε start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT hypergeometric-Meijer resummation, Eur. Phys. J. C 81, 87 (2021), arXiv:2005.12714 .
  5. Conformal bootstrap and the λ𝜆\lambdaitalic_λ-point specific heat experimental anomaly, J. Club Condens. Matter Phys.  (2020).
  6. P. Butera and M. Comi, An on-line library of extended high-temperature expansions of basic observables for the spin-S Ising models on two- and three-dimensional lattices, J. Stat. Phys. 109, 311 (2002a).
  7. P. Butera and M. Comi, Critical universality and hyperscaling revisited for Ising models of general spin using extended high-temperature series, Phys. Rev. B 65, 144431 (2002b).
  8. M. Hasenbusch, Monte Carlo study of a generalized icosahedral model on the simple cubic lattice, Phys. Rev. B 102, 024406 (2020).
  9. M. Hasenbusch, Monte Carlo study of an improved clock model in three dimensions, Phys. Rev. B 100, 224517 (2019).
  10. H. Kleinert and V. Schulte-Frohlinde, Exact five-loop renormalization group functions of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT-theory with O⁢(N)𝑂𝑁O(N)italic_O ( italic_N )-symmetric and cubic interactions. Critical exponents up to ϵ5superscriptitalic-ϵ5\epsilon^{5}italic_ϵ start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT, Phys. Lett. B 342, 284 (1995).
  11. J. Zinn-Justin, Precise determination of critical exponents and equation of state by field theory methods, Phys. Rep. 344, 159 (2001).
  12. M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormalization of O⁢(n)𝑂𝑛O(n)italic_O ( italic_n )-symmetric ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory and critical exponents, Phys. Rev. D 96, 036016 (2017).
  13. O. Schnetz, Numbers and functions in quantum field theory, Phys. Rev. D 97, 085018 (2018), arXiv:1606.08598 .
  14. J. C. Le Guillou and J. Zinn-Justin, Critical exponents for the n-vector model in three dimensions from field theory, Phys. Rev. Lett. 39, 95 (1977).
  15. A. M. Shalaby, Precise critical exponents of the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N )-symmetric quantum field model using hypergeometric-Meijer resummation, Phys. Rev. D 101, 105006 (2020b).
  16. L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944).
  17. B. Nienhuis, Exact Critical Point and Critical Exponents of O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) Models in Two Dimensions, Phys. Rev. Lett. 49, 1062 (1982).
  18. H. Kleinert, Critical exponents from seven-loop strong-coupling ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTtheory in three dimensions, Phys. Rev. D 60, 085001 (1999).
  19. H. Kleinert, Strong-coupling behavior of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theories and critical exponents, Phys. Rev. D 57, 2264 (1998).
  20. H. Kleinert, Variational interpolation algorithm between weak- and strong-coupling expansions — application to the polaron, Phys. Lett. A 207, 133 (1995).
  21. W. Janke and H. Kleinert, Convergent Strong-Coupling Expansions from Divergent Weak-Coupling Perturbation Theory, Phys. Rev. Lett. 75, 2787 (1995).
  22. M. Peskin and D. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  23. F. Jasch and H. Kleinert, Fast-convergent resummation algorithm and critical exponents of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT-theory in three dimensions, J. Math. Phys. 42, 52 (2001).
  24. L. Skála, J. Cízek, and J. Zamastil, Strong coupling perturbation expansions for anharmonic oscillators. Numerical results, J. Phys. A. Math. Gen. 32, 5715 (1999).
  25. S. Coleman, Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11, 2088 (1975).
  26. A. Shalaby, Non-perturbative calculations for the effective potential of the PT symmetric and non-Hermitian (−g⁢ϕ4)𝑔superscriptitalic-ϕ4(-g\phi^{4})( - italic_g italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) field theoretical model, Eur. Phys. J. C 50, 999 (2007).
  27. A. M. Din, Some Remarks on the Normal Ordering of Lagrangians, Phys. Rev. D 4, 995 (1971).
  28. A. M. Shalaby, Universal large-order asymptotic behavior of the strong-coupling and high-temperature series expansions, Phys. Rev. D 105, 045004 (2022), arXiv:1911.03571 .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com