Perturbative calculation of critical exponents for the Bose-Hubbard model (1401.0680v1)
Abstract: We develop a strategy for calculating critical exponents for the Mott insulator-to-superfluid transition shown by the Bose-Hubbard model. Our approach is based on the field-theoretic concept of the effective potential, which provides a natural extension of the Landau theory of phase transitions to quantum critical phenomena. The coefficients of the Landau expansion of that effective potential are obtained by high-order perturbation theory. We counteract the divergency of the weak-coupling perturbation series by including the seldom considered Landau coefficient $a_6$ into our analysis. Our preliminary results indicate that the critical exponents for both the condensate density and the superfluid density, as derived from the two-dimensional Bose-Hubbard model, deviate by less than $1\%$ from the best known estimates computed so far for the three-dimensional $XY$ universality class.