Electrodynamics and Geometric Continuum Mechanics (2312.07978v1)
Abstract: This paper offers an informal instructive introduction to some of the main notions of geometric continuum mechanics for the case of smooth fields. We use a metric invariant stress theory of continuum mechanics to formulate a simple generalization of the fields of electrodynamics and Maxwell's equations to general differentiable manifolds of any dimension, thus viewing generalized electrodynamics as a special case of continuum mechanics. The basic kinematic variable is the potential, which is represented as a $p$-form in an $n$-dimensional spacetime. The stress for the case of generalized electrodynamics is assumed to be represented by an $(n-p-1)$-form, a generalization of the Maxwell $2$-form.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.