Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of Power Control for Autonomous Hybrid Electric Vehicles with Flexible Power Demand (2312.07894v1)

Published 13 Dec 2023 in eess.SY and cs.SY

Abstract: Technology advancement for on-road vehicles has gained significant momentum in the past decades, particularly in the field of vehicle automation and powertrain electrification. The optimization of powertrain controls for autonomous vehicles typically involves a separated consideration of the vehicle's external dynamics and powertrain dynamics, with one key aspect often overlooked. This aspect, known as flexible power demand, recognizes that the powertrain control system does not necessarily have to precisely match the power requested by the vehicle motion controller at all times. Leveraging this feature can lead to control designs achieving improved fuel economy by adding an extra degree of freedom to the powertrain control. The present research investigates the use of an Approximate Dynamic Programming (ADP) approach to develop a powertrain controller, which takes into account the flexibility in power demand within the ADP framework. The formulation is based on an autonomous hybrid electric vehicle (HEV), while the methodology can also be applied to other types of vehicles. It is also found that necessary customization of the ADP algorithm is needed for this particular control problem to prevent convergence issues. Finally, a case study is presented to evaluate the effectiveness of the investigated method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. M. Kargar and X. Song, “Power control optimization for autonomous hybrid electric vehicles with flexible driveline torque demand,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 2012–2017.
  2. X. Qu, Y. Yu, M. Zhou, C.-T. Lin, and X. Wang, “Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: a reinforcement learning based approach,” Applied Energy, vol. 257, p. 114030, 2020.
  3. F. Zhang, L. Wang, S. Coskun, H. Pang, Y. Cui, and J. Xi, “Energy management strategies for hybrid electric vehicles: Review, classification, comparison, and outlook,” Energies, vol. 13, no. 13, p. 3352, 2020.
  4. O. Kavas-Torris, M. R. Cantas, K. Meneses Cime, B. Aksun Guvenc, and L. Guvenc, “The effects of varying penetration rates of l4-l5 autonomous vehicles on fuel efficiency and mobility of traffic networks,” Tech. Rep., 2020.
  5. F. Duarte and C. Ratti, “The impact of autonomous vehicles on cities: A review,” Journal of Urban Technology, vol. 25, no. 4, pp. 3–18, 2018.
  6. M. Ghasemi and X. Song, “Powertrain energy management for autonomous hybrid electric vehicles with flexible driveline power demand,” IEEE Transactions on Control Systems Technology, vol. 27, no. 5, pp. 2229–2236, 2018.
  7. P. Doshi, D. Kapur, and R. Iyer, “Hybridization—bridge for electrification,” in 2017 IEEE Transportation Electrification Conference (ITEC-India).   IEEE, 2017, pp. 1–5.
  8. J. Liu and H. Peng, “Modeling and control of a power-split hybrid vehicle,” IEEE transactions on control systems technology, vol. 16, no. 6, pp. 1242–1251, 2008.
  9. S. Hong, H. Kim, and J. Kim, “Motor control algorithm for an optimal engine operation of power split hybrid electric vehicle,” International Journal of Automotive Technology, vol. 16, no. 1, pp. 97–105, 2015.
  10. H. A. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, and I. V. Kolmanovsky, “Predictive energy management of a power-split hybrid electric vehicle,” in 2009 American control conference.   IEEE, 2009, pp. 3970–3976.
  11. R. Wang and S. M. Lukic, “Dynamic programming technique in hybrid electric vehicle optimization,” in 2012 IEEE International Electric Vehicle Conference.   IEEE, 2012, pp. 1–8.
  12. L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. García, “Optimization of power management in an hybrid electric vehicle using dynamic programming,” Mathematics and Computers in Simulation, vol. 73, no. 1-4, pp. 244–254, 2006.
  13. X. Zeng and J. Wang, “A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview,” IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2416–2423, 2015.
  14. Y. Huang, H. Wang, A. Khajepour, H. He, and J. Ji, “Model predictive control power management strategies for hevs: A review,” Journal of Power Sources, vol. 341, pp. 91–106, 2017.
  15. T. Hofman, M. Steinbuch, R. Van Druten, and A. Serrarens, “Rule-based energy management strategies for hybrid vehicles,” International Journal of Electric and Hybrid Vehicles, vol. 1, no. 1, pp. 71–94, 2007.
  16. N. Jalil, N. A. Kheir, and M. Salman, “A rule-based energy management strategy for a series hybrid vehicle,” in Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041), vol. 1.   IEEE, 1997, pp. 689–693.
  17. G. Paganelli, S. Delprat, T.-M. Guerra, J. Rimaux, and J.-J. Santin, “Equivalent consumption minimization strategy for parallel hybrid powertrains,” in Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No. 02CH37367), vol. 4.   IEEE, 2002, pp. 2076–2081.
  18. B. Škugor, J. Deur, M. Cipek, and D. Pavković, “Design of a power-split hybrid electric vehicle control system utilizing a rule-based controller and an equivalent consumption minimization strategy,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 228, no. 6, pp. 631–648, 2014.
  19. Z. Yuan, L. Teng, S. Fengchun, and H. Peng, “Comparative study of dynamic programming and pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle,” Energies, vol. 6, no. 4, pp. 2305–2318, 2013.
  20. J. Jeong, D. Lee, N. Kim, C. Zheng, Y.-I. Park, and S. W. Cha, “Development of pmp-based power management strategy for a parallel hybrid electric bus,” International journal of precision engineering and manufacturing, vol. 15, no. 2, pp. 345–353, 2014.
  21. P. Ahmadizadeh, B. Mashadi, and D. Lodaya, “Energy management of a dual-mode power-split powertrain based on the pontryagin’s minimum principle,” IET Intelligent Transport Systems, vol. 11, no. 9, pp. 561–571, 2017.
  22. R. Lian, J. Peng, Y. Wu, H. Tan, and H. Zhang, “Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle,” Energy, vol. 197, p. 117297, 2020.
  23. J. Wu, H. He, J. Peng, Y. Li, and Z. Li, “Continuous reinforcement learning of energy management with deep q network for a power split hybrid electric bus,” Applied energy, vol. 222, pp. 799–811, 2018.
  24. O. Yazar, S. Coskun, L. Li, F. Zhang, and C. Huang, “Actor-critic td3-based deep reinforcement learning for energy management strategy of hev,” in 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA).   IEEE, 2023, pp. 1–6.
  25. S. P. H. Boroujeni and E. Pashaei, “A novel hybrid gene selection based on random forest approach and binary dragonfly algorithm,” in 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).   IEEE, 2021, pp. 1–8.
  26. C. Ochieze, S. Zare, and Y. Sun, “Wearable upper limb robotics for pervasive health: A review,” Progress in Biomedical Engineering, 2023.
  27. A. M. Nasrabadi, A. R. Eslaminia, P. R. Bakhshayesh, M. Ejtehadi, L. Alibiglou, and S. Behzadipour, “A new scheme for the development of imu-based activity recognition systems for telerehabilitation,” Medical Engineering & Physics, vol. 108, p. 103876, 2022.
  28. I. Jebellat, E. Jebellat, A. Amiri-Margavi, A. Vahidi-Moghaddam, and H. Nejat Pishkenari, “A reinforcement learning approach to find optimal propulsion strategy for microrobots swimming at low reynolds number,” Available at SSRN 4559765, 2023.
  29. I. Jebellat, H. N. Pishkenari, and E. Jebellat, “Training microrobots via reinforcement learning and a novel coding method,” in 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM).   IEEE, 2021, pp. 105–111.
  30. P. Ghadermazi and S. H. J. Chan, “Microbial interactions from a new perspective: Reinforcement learning reveals new insights into microbiome evolution,” bioRxiv, pp. 2023–05, 2023.
  31. H. Rajoli, F. Lotfi, A. Atyabi, and F. Afghah, “Triplet loss-less center loss sampling strategies in facial expression recognition scenarios,” in 2023 57th Annual Conference on Information Sciences and Systems (CISS).   IEEE, 2023, pp. 1–6.
  32. N. Mehrabi and S. P. H. Boroujeni, “Age estimation based on facial images using hybrid features and particle swarm optimization,” in 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE).   IEEE, 2021, pp. 412–418.
  33. S. P. H. Boroujeni and A. Razi, “Ic-gan: An improved conditional generative adversarial network for rgb-to-ir image translation with applications to forest fire monitoring,” Expert Systems with Applications, vol. 238, p. 121962, 2024.
  34. A. Pourghorban and D. Maity, “Target defense against periodically arriving intruders,” arXiv preprint arXiv:2303.05577, 2023.
  35. H. Mokari, E. Firouzmand, I. Sharifi, and A. Doustmohammadi, “Resilient control strategy and attack detection on platooning of smart vehicles under dos attack,” ISA transactions, 2023.
  36. H. Mokari, E. Firouzmand, I. Sharifi, and A. Doustmohammadi, “Dos attack detection and resilient control in platoon of smart vehicles,” in 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM).   IEEE, 2021, pp. 144–150.
  37. A. A. R. Lori, “Optimal path planning for aerial load transportation in complex environments using pso-improved artificial potential fields,” arXiv preprint arXiv:2311.10675, 2023.
  38. S. Y. Ashkoofaraz and A. A. R. Lori, “Aerial load transportation with obstacle avoidance in observed environment,” in 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM).   IEEE, 2022, pp. 248–253.
  39. P. Samanipour and H. A. Poonawala, “Stability analysis and controller synthesis using single-hidden-layer relu neural networks,” IEEE Transactions on Automatic Control, 2023.
  40. K. Safavigerdini, K. Nouduri, R. Surya, A. Reinhard, Z. Quinlan, F. Bunyak, M. R. Maschmann, and K. Palaniappan, “Predicting mechanical properties of carbon nanotube (cnt) images using multi-layer synthetic finite element model simulations,” in 2023 IEEE International Conference on Image Processing (ICIP).   IEEE, 2023, pp. 3264–3268.
  41. D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transportation Research Part A: Policy and Practice, vol. 77, pp. 167–181, 2015.
  42. M. M. Rashid, F. Farzaneh, M. Seyedi, and S. Jung, “Evaluation of risk injury in pedestrians’ head and chest region during collision with an autonomous bus,” International Journal of Crashworthiness, pp. 1–11, 2023.
  43. M. Martínez-Díaz and F. Soriguera, “Autonomous vehicles: theoretical and practical challenges,” Transportation Research Procedia, vol. 33, pp. 275–282, 2018.
  44. T. Litman, “Autonomous vehicle implementation predictions: Implications for transport planning,” 2020.
  45. L. Ye and T. Yamamoto, “Evaluating the impact of connected and autonomous vehicles on traffic safety,” Physica A: Statistical Mechanics and its Applications, vol. 526, p. 121009, 2019.
  46. R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli et al., “Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments,” Transportation Research Part C: Emerging Technologies, vol. 89, pp. 205–221, 2018.
  47. A. Panday and H. O. Bansal, “A review of optimal energy management strategies for hybrid electric vehicle,” International Journal of Vehicular Technology, vol. 2014, 2014.
  48. M. A. M. Zulkefli, J. Zheng, Z. Sun, and H. X. Liu, “Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration,” Transportation Research Part C: Emerging Technologies, vol. 45, pp. 41–63, 2014.
  49. N. Kim, S. W. Cha, and H. Peng, “Optimal equivalent fuel consumption for hybrid electric vehicles,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 817–825, 2011.
  50. H. Kim and D. Kum, “Comprehensive design methodology of input-and output-split hybrid electric vehicles: In search of optimal configuration,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 6, pp. 2912–2923, 2016.
  51. S. J. Kim, K.-S. Kim, and D. Kum, “Feasibility assessment and design optimization of a clutchless multimode parallel hybrid electric powertrain,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 774–786, 2015.
  52. N. Kim, A. Rousseau, and D. Lee, “A jump condition of pmp-based control for phevs,” Journal of Power Sources, vol. 196, no. 23, pp. 10 380–10 386, 2011.
  53. S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios,” International Journal of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 190–216, 2010.
  54. G. Foderaro, S. Ferrari, and T. A. Wettergren, “Distributed optimal control for multi-agent trajectory optimization,” Automatica, vol. 50, no. 1, pp. 149–154, 2014.
  55. P. Jantapremjit and P. A. Wilson, “Control and guidance for homing and docking tasks using an autonomous underwater vehicle,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2007, pp. 3672–3677.
  56. J. Ma, Y. Zheng, and L. Wang, “Lqr-based optimal topology of leader-following consensus,” International Journal of Robust and Nonlinear Control, vol. 25, no. 17, pp. 3404–3421, 2015.
  57. H. Zhang, T. Feng, G.-H. Yang, and H. Liang, “Distributed cooperative optimal control for multiagent systems on directed graphs: An inverse optimal approach,” IEEE Transactions on Cybernetics, vol. 45, no. 7, pp. 1315–1326, 2014.
  58. H. Zhang, J. Zhang, G.-H. Yang, and Y. Luo, “Leader-based optimal coordination control for the consensus problem of multiagent differential games via fuzzy adaptive dynamic programming,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 1, pp. 152–163, 2014.
  59. Q. Yao, Y. Tian, Q. Wang, and S. Wang, “Control strategies on path tracking for autonomous vehicle: State of the art and future challenges,” IEEE Access, vol. 8, pp. 161 211–161 222, 2020.
  60. C. Atkinson, A. Lewis, A. Salvia, and G. Vishwanathan, “Powertrain innovations for connected and autonomous vehicles,” in Proc. Powertrain Innov. Workshop, Adv. Res. Projects Agency-Energy, 2015, pp. 1–8.
  61. M. Kargar, C. Zhang, and X. Song, “Integrated optimization of powertrain energy management and vehicle motion control for autonomous hybrid electric vehicles,” in 2022 American Control Conference (ACC), 2022, pp. 404–409.
  62. L. Zhang, X. Ye, X. Xia, and F. Barzegar, “A real-time energy management and speed controller for an electric vehicle powered by a hybrid energy storage system,” IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6272–6280, 2020.
  63. W. Wang, X. Guo, C. Yang, Y. Zhang, Y. Zhao, D. Huang, and C. Xiang, “A multi-objective optimization energy management strategy for power split hev based on velocity prediction,” Energy, vol. 238, p. 121714, 2022.
  64. L. Zhao, A. I. Mahbub, and A. A. Malikopoulos, “Optimal vehicle dynamics and powertrain control for connected and automated vehicles,” in 2019 IEEE conference on control technology and applications (CCTA).   IEEE, 2019, pp. 33–38.
  65. A. Mahbub and A. A. Malikopoulos, “Concurrent optimization of vehicle dynamics and powertrain operation using connectivity and automation,” arXiv preprint arXiv:1911.03475, 2019.
  66. G. Ma, M. Ghasemi, and X. Song, “Integrated powertrain energy management and vehicle coordination for multiple connected hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 2893–2899, 2017.
  67. L. Engbroks, D. Görke, S. Schmiedler, J. Strenkert, and B. Geringer, “Applying forward dynamic programming to combined energy and thermal management optimization of hybrid electric vehicles,” IFAC-PapersOnLine, vol. 51, no. 31, pp. 383–389, 2018.
  68. F. Zhang, X. Hu, R. Langari, L. Wang, Y. Cui, and H. Pang, “Adaptive energy management in automated hybrid electric vehicles with flexible torque request,” Energy, vol. 214, p. 118873, 2021.
  69. M. Sánchez, S. Delprat, and T. Hofman, “Energy management of hybrid vehicles with state constraints: A penalty and implicit hamiltonian minimization approach,” Applied Energy, vol. 260, p. 114149, 2020.
  70. L. Serrao, S. Onori, and G. Rizzoni, “Ecms as a realization of pontryagin’s minimum principle for hev control,” in 2009 American control conference.   IEEE, 2009, pp. 3964–3969.
  71. P. Elbert, S. Ebbesen, and L. Guzzella, “Implementation of dynamic programming for n𝑛nitalic_n-dimensional optimal control problems with final state constraints,” IEEE Transactions on Control Systems Technology, vol. 21, no. 3, pp. 924–931, 2012.
  72. M. Kargar, C. Zhang, and X. Song, “Integrated optimization of power management and vehicle motion control for autonomous hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 11 147–11 155, 2023.
  73. N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid electric vehicles based on pontryagin’s minimum principle,” IEEE Transactions on control systems technology, vol. 19, no. 5, pp. 1279–1287, 2010.
  74. R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.
  75. F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE circuits and systems magazine, vol. 9, no. 3, pp. 32–50, 2009.
  76. A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 1, pp. 145–157, 2012.
  77. C. Li, J. Ding, F. L. Lewis, and T. Chai, “A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems,” Automatica, vol. 129, p. 109687, 2021.
  78. B. Kiumarsi, B. AlQaudi, H. Modares, F. L. Lewis, and D. S. Levine, “Optimal control using adaptive resonance theory and q-learning,” Neurocomputing, vol. 361, pp. 119–125, 2019.
  79. M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network hjb approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.
  80. M. Khajeh-Hosseini and A. Talebpour, “A novel clustering approach to identify vehicles equipped with adaptive cruise control in a vehicle trajectory data,” in 100th Annual Meeting of the Transportation Research Board of National Academies, 2021.
  81. M. Kargar, T. Sardarmehni, and X. Song, “Optimal powertrain energy management for autonomous hybrid electric vehicles with flexible driveline power demand using approximate dynamic programming,” IEEE Transactions on Vehicular Technology, vol. 71, no. 12, pp. 12 564–12 575, 2022.
  82. S. Onori, L. Serrao, and G. Rizzoni, “Hybrid electric vehicles: Energy management strategies,” 2016.

Summary

We haven't generated a summary for this paper yet.