PT-symmetric quantum sensing: advantages and restrictions (2312.07892v1)
Abstract: Quantum sensing utilizing unique quantum properties of non-Hermitian systems to realize ultra-precision measurements has been attracting increasing attention. However, the debate on whether non-Hermitian systems are superior to Hermitian counterparts in sensing remains an open question. Here, we investigate the quantum information in PT-symmetric quantum sensing utilizing two experimental schemes based on the trapped-ion platform. It turns out that the existence of advantages of non-Hermitian quantum sensing heavily depends on additional information resources carried by the extra degrees of freedom introduced to construct PT-symmetric quantum sensors. Moreover, the practical application of non-Hermitian quantum sensing with superior performance is primarily restricted by the additional resource consumption accompanied by the post-selection. Our study provides theoretical references for the construction of non-Hermitian quantum sensors with superior performance and has potential applications in research fields of quantum precision measurement and quantum information processing.
- C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
- C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70, 947 (2007).
- C. M. Bender, D. C. Brody, and H. F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett. 89, 270401 (2002).
- U. Günther and B. F. Samsonov, Naimark-Dilated PT-Symmetric Brachistochrone, Phys. Rev. Lett. 101, 230404 (2008a).
- S. Croke, PT-symmetric Hamiltonians and their application in quantum information, Phys. Rev. A 91, 052113 (2015).
- K. Kawabata, Y. Ashida, and M. Ueda, Information Retrieval and Criticality in Parity-Time-Symmetric Systems, Phys. Rev. Lett. 119, 190401 (2017).
- A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002a).
- A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43, 2814 (2002b).
- N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011).
- Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Advan. Phys. 69, 249 (2020).
- M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
- E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
- B. Midya, H. Zhao, and L. Feng, Non-Hermitian photonics promises exceptional topology of light, Nat. Commun. 9, 2674 (2018).
- A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11, 5382 (2020).
- X.-W. Luo, C. Zhang, and S. Du, Quantum Squeezing and Sensing with Pseudo-Anti-Parity-Time Symmetry, Phys. Rev. Lett. 128, 173602 (2022).
- J. Wiersig, Review of exceptional point-based sensors, Photon. Res. 8, 1457 (2020a).
- H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2010).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- V. Giovannetti, S. Lloyd, and L. MacCone, Advances in quantum metrology, Nat. Photon. 5, 222 (2011).
- M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
- J. C. Budich and E. J. Bergholtz, Non-Hermitian Topological Sensors, Phys. Rev. Lett. 125, 180403 (2020).
- F. Koch and J. C. Budich, Quantum non-Hermitian topological sensors, Phys. Rev. Res. 4, 013113 (2022).
- L. Bao, B. Qi, and D. Dong, Exponentially Enhanced Quantum Non-Hermitian Sensing via Optimized Coherent Drive, Phys. Rev. Appl. 17, 014034 (2022).
- W. Langbein, No exceptional precision of exceptional point sensors, Phys. Rev. A 98, 023805 (2018).
- C. Chen, L. Jin, and R. B. Liu, Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system, New J. Phys. 21, 083002 (2019).
- J. Wiersig, Prospects and fundamental limits in exceptional point-based sensing, Nat. Commun. 11, 2454 (2020b).
- R. Duggan, S. A. Mann, and A. Alù, Limitations of Sensing at an Exceptional Point, ACS Photon. 9, 1554 (2022).
- H. K. Lau and A. A. Clerk, Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing, Nat. Commun. 9, 4320 (2018).
- W. Ding, X. Wang, and S. Chen, Fundamental Sensitivity Limits for non-Hermitian Quantum Sensors, Phys. Rev. Lett. 131, 160801 (2023).
- D. C. Brody and E.-M. Graefe, Mixed-State Evolution in the Presence of Gain and Loss, Phys. Rev. Lett. 109, 230405 (2012).
- L. J. Fiderer, J. M. Fraïsse, and D. Braun, Maximal quantum fisher information for mixed states, Phys. Rev. Lett. 123, 250502 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.