Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Quality/Cosmology Tension for a Post-Inflation QCD Axion (2312.07650v2)

Published 12 Dec 2023 in hep-ph and hep-th

Abstract: It is difficult to construct a post-inflation QCD axion model that solves the axion quality problem (and hence the Strong CP problem) without introducing a cosmological disaster. In a post-inflation axion model, the axion field value is randomized during the Peccei-Quinn phase transition, and axion domain walls form at the QCD phase transition. We emphasize that the gauge equivalence of all minima of the axion potential (i.e., domain wall number one) is insufficient to solve the cosmological domain wall problem. The axion string on which a domain wall ends must exist as an individual object (as opposed to a multi-string state), and it must be produced in the early universe. These conditions are often not satisfied in concrete models. Post-inflation axion models also face a potential problem from fractionally charged relics; solving this problem often leads to low-energy Landau poles for Standard Model gauge couplings, reintroducing the quality problem. We study several examples, finding that models that solve the quality problem face cosmological problems, and vice versa. This is not a no-go theorem; nonetheless, we argue that it is much more difficult than generally appreciated to find a viable post-inflation QCD axion model. Successful examples may have a nonstandard cosmological history (e.g., multiple types of cosmic axion strings of different tensions), undermining the widespread expectation that the post-inflation QCD axion scenario predicts a unique mass for axion dark matter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (102)
  1. R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.
  2. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  3. S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
  4. F. Wilczek, “Problem of Strong P and T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
  5. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. 120B (1983) 127–132.
  6. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. 120B (1983) 137–141.
  7. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. 120B (1983) 133–136.
  8. J. E. Kim and G. Carosi, “Axions and the Strong CP Problem,” Rev. Mod. Phys. 82 (2010) 557–602, arXiv:0807.3125 [hep-ph]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].
  9. A. Hook, “TASI Lectures on the Strong CP Problem and Axions,” PoS TASI2018 (2019) 004, arXiv:1812.02669 [hep-ph].
  10. M. Reece, “TASI Lectures: (No) Global Symmetries to Axion Physics,” arXiv:2304.08512 [hep-ph].
  11. M. Kawasaki and K. Nakayama, “Axions: Theory and Cosmological Role,” Ann. Rev. Nucl. Part. Sci. 63 (2013) 69–95, arXiv:1301.1123 [hep-ph].
  12. D. J. E. Marsh, “Axion Cosmology,” Phys. Rept. 643 (2016) 1–79, arXiv:1510.07633 [astro-ph.CO].
  13. B. R. Safdi, “TASI Lectures on the Particle Physics and Astrophysics of Dark Matter,” arXiv:2303.02169 [hep-ph].
  14. H. M. Georgi, L. J. Hall, and M. B. Wise, “Grand Unified Models With an Automatic Peccei-Quinn Symmetry,” Nucl. Phys. B 192 (1981) 409–416.
  15. G. Lazarides, C. Panagiotakopoulos, and Q. Shafi, “Phenomenology and Cosmology With Superstrings,” Phys. Rev. Lett. 56 (1986) 432.
  16. J. A. Casas and G. G. Ross, “A Solution to the Strong CP Problem in Superstring Models,” Phys. Lett. B 192 (1987) 119–124.
  17. M. Kamionkowski and J. March-Russell, “Planck scale physics and the Peccei-Quinn mechanism,” Phys. Lett. B 282 (1992) 137–141, arXiv:hep-th/9202003.
  18. R. Holman, S. D. H. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, and L. M. Widrow, “Solutions to the strong CP problem in a world with gravity,” Phys. Lett. B 282 (1992) 132–136, arXiv:hep-ph/9203206.
  19. S. M. Barr and D. Seckel, “Planck scale corrections to axion models,” Phys. Rev. D 46 (1992) 539–549.
  20. S. Ghigna, M. Lusignoli, and M. Roncadelli, “Instability of the invisible axion,” Phys. Lett. B 283 (1992) 278–281.
  21. L. Randall, “Composite axion models and Planck scale physics,” Phys. Lett. B 284 (1992) 77–80.
  22. M. Dine, “Problems of naturalness: Some lessons from string theory,” in Conference on Topics in Quantum Gravity. 7, 1992. arXiv:hep-th/9207045.
  23. R. Kallosh, A. D. Linde, D. A. Linde, and L. Susskind, “Gravity and global symmetries,” Phys. Rev. D 52 (1995) 912–935, arXiv:hep-th/9502069.
  24. M. Redi and A. Tesi, “Meso-inflationary QCD axion,” Phys. Rev. D 107 no. 9, (2023) 095032, arXiv:2211.06421 [hep-ph].
  25. M. Gorghetto, E. Hardy, H. Nicolaescu, A. Notari, and M. Redi, “Early vs late string networks from a minimal QCD Axion,” arXiv:2311.09315 [hep-ph].
  26. E. Witten, “Some Properties of O(32) Superstrings,” Phys. Lett. B 149 (1984) 351–356.
  27. K. Choi, “A QCD axion from higher dimensional gauge field,” Phys. Rev. Lett. 92 (2004) 101602, arXiv:hep-ph/0308024.
  28. P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.
  29. J. P. Conlon, “The QCD axion and moduli stabilisation,” JHEP 05 (2006) 078, arXiv:hep-th/0602233.
  30. M. Cicoli, A. Hebecker, J. Jaeckel, and M. Wittner, “Axions in string theory — slaying the Hydra of dark radiation,” JHEP 09 (2022) 198, arXiv:2203.08833 [hep-th].
  31. J. N. Benabou, Q. Bonnefoy, M. Buschmann, S. Kumar, and B. R. Safdi, “The Cosmological Dynamics of String Theory Axion Strings,” to appear.
  32. T. Asaka and M. Yamaguchi, “Hadronic axion model in gauge mediated supersymmetry breaking,” Phys. Lett. B 437 (1998) 51–61, arXiv:hep-ph/9805449.
  33. T. Banks, M. Dine, and M. Graesser, “Supersymmetry, axions and cosmology,” Phys. Rev. D 68 (2003) 075011, arXiv:hep-ph/0210256.
  34. M. P. Hertzberg, M. Tegmark, and F. Wilczek, “Axion Cosmology and the Energy Scale of Inflation,” Phys. Rev. D 78 (2008) 083507, arXiv:0807.1726 [astro-ph].
  35. Y. Bao, J. Fan, and L. Li, “Opening up a Window on the Postinflationary QCD Axion,” Phys. Rev. Lett. 130 no. 24, (2023) 241001, arXiv:2209.09908 [hep-ph].
  36. P. Sikivie, “Of Axions, Domain Walls and the Early Universe,” Phys. Rev. Lett. 48 (1982) 1156–1159.
  37. Y. B. Zeldovich, I. Y. Kobzarev, and L. B. Okun, “Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry,” Zh. Eksp. Teor. Fiz. 67 (1974) 3–11.
  38. T. W. B. Kibble, G. Lazarides, and Q. Shafi, “Strings in SO(10),” Phys. Lett. B 113 (1982) 237–239.
  39. A. Vilenkin and A. E. Everett, “Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons,” Phys. Rev. Lett. 48 (1982) 1867–1870.
  40. T. W. B. Kibble, G. Lazarides, and Q. Shafi, “Walls Bounded by Strings,” Phys. Rev. D 26 (1982) 435.
  41. A. E. Everett and A. Vilenkin, “Left-right Symmetric Theories and Vacuum Domain Walls and Strings,” Nucl. Phys. B 207 (1982) 43–53.
  42. G. B. Gelmini, M. Gleiser, and E. W. Kolb, “Cosmology of Biased Discrete Symmetry Breaking,” Phys. Rev. D 39 (1989) 1558.
  43. S. E. Larsson, S. Sarkar, and P. L. White, “Evading the cosmological domain wall problem,” Phys. Rev. D 55 (1997) 5129–5135, arXiv:hep-ph/9608319.
  44. T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi, “Axion cosmology with long-lived domain walls,” JCAP 01 (2013) 001, arXiv:1207.3166 [hep-ph].
  45. D. Coulson, Z. Lalak, and B. A. Ovrut, “Biased domain walls,” Phys. Rev. D 53 (1996) 4237–4246.
  46. M. Hindmarsh, “Analytic scaling solutions for cosmic domain walls,” Phys. Rev. Lett. 77 (1996) 4495–4498, arXiv:hep-ph/9605332.
  47. K. A. Beyer and S. Sarkar, “Ruling out light axions: The writing is on the wall,” SciPost Phys. 15 no. 1, (2023) 003, arXiv:2211.14635 [hep-ph].
  48. G. Lazarides and Q. Shafi, “Axion Models with No Domain Wall Problem,” Phys. Lett. B 115 (1982) 21–25.
  49. M. Gorghetto, E. Hardy, and G. Villadoro, “Axions from Strings: the Attractive Solution,” JHEP 07 (2018) 151, arXiv:1806.04677 [hep-ph].
  50. M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, and B. R. Safdi, “Dark matter from axion strings with adaptive mesh refinement,” Nature Commun. 13 no. 1, (2022) 1049, arXiv:2108.05368 [hep-ph].
  51. M. Buschmann, J. W. Foster, and B. R. Safdi, “Early-Universe Simulations of the Cosmological Axion,” Phys. Rev. Lett. 124 no. 16, (2020) 161103, arXiv:1906.00967 [astro-ph.CO].
  52. T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi, “Production of dark matter axions from collapse of string-wall systems,” Phys. Rev. D 85 (2012) 105020, arXiv:1202.5851 [hep-ph]. [Erratum: Phys.Rev.D 86, 089902 (2012)].
  53. V. B. Klaer and G. D. Moore, “The dark-matter axion mass,” JCAP 11 (2017) 049, arXiv:1708.07521 [hep-ph].
  54. M. Gorghetto, E. Hardy, and G. Villadoro, “More axions from strings,” SciPost Phys. 10 no. 2, (2021) 050, arXiv:2007.04990 [hep-ph].
  55. M. Ardu, L. Di Luzio, G. Landini, A. Strumia, D. Teresi, and J.-W. Wang, “Axion quality from the (anti)symmetric of SU(𝒩𝒩\mathcal{N}caligraphic_N),” JHEP 11 (2020) 090, arXiv:2007.12663 [hep-ph].
  56. L. Di Luzio, E. Nardi, and L. Ubaldi, “Accidental Peccei-Quinn symmetry protected to arbitrary order,” Phys. Rev. Lett. 119 no. 1, (2017) 011801, arXiv:1704.01122 [hep-ph].
  57. L. M. Krauss and F. Wilczek, “Discrete Gauge Symmetry in Continuum Theories,” Phys. Rev. Lett. 62 (1989) 1221.
  58. B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius, and I. Valenzuela, “Non-invertible global symmetries and completeness of the spectrum,” JHEP 09 (2021) 203, arXiv:2104.07036 [hep-th].
  59. J. Polchinski, “Monopoles, duality, and string theory,” Int. J. Mod. Phys. A 19S1 (2004) 145–156, arXiv:hep-th/0304042.
  60. X. Niu, W. Xue, and F. Yang, “Gauged Global Strings,” arXiv:2311.07639 [hep-ph].
  61. D. Buttazzo, L. Di Luzio, P. Ghorbani, C. Gross, G. Landini, A. Strumia, D. Teresi, and J.-W. Wang, “Scalar gauge dynamics and Dark Matter,” JHEP 01 (2020) 130, arXiv:1911.04502 [hep-ph].
  62. P. Laguna and R. A. Matzner, “Peeling U(1) gauge cosmic strings,” Phys. Rev. Lett. 62 (1989) 1948–1951.
  63. L. M. A. Bettencourt and T. W. B. Kibble, “Nonintercommuting configurations in the collisions of type I U(1) cosmic strings,” Phys. Lett. B 332 (1994) 297–304, arXiv:hep-ph/9405221.
  64. L. M. A. Bettencourt, P. Laguna, and R. A. Matzner, “Nonintercommuting cosmic strings,” Phys. Rev. Lett. 78 (1997) 2066–2069, arXiv:hep-ph/9612350.
  65. C. T. Hill, A. L. Kagan, and L. M. Widrow, “Are Cosmic Strings Frustrated?,” Phys. Rev. D 38 (1988) 1100.
  66. V. B. Klaer and G. D. Moore, “How to simulate global cosmic strings with large string tension,” JCAP 10 (2017) 043, arXiv:1707.05566 [hep-ph].
  67. T. Hiramatsu, M. Ibe, and M. Suzuki, “New Type of String Solutions with Long Range Forces,” JHEP 02 (2020) 058, arXiv:1910.14321 [hep-ph].
  68. T. Hiramatsu, M. Ibe, and M. Suzuki, “Cosmic string in Abelian-Higgs model with enhanced symmetry — Implication to the axion domain-wall problem,” JHEP 09 (2020) 054, arXiv:2005.10421 [hep-ph].
  69. E. J. Copeland, T. W. B. Kibble, and D. A. Steer, “Collisions of strings with Y junctions,” Phys. Rev. Lett. 97 (2006) 021602, arXiv:hep-th/0601153.
  70. E. J. Copeland, T. W. B. Kibble, and D. A. Steer, “Constraints on string networks with junctions,” Phys. Rev. D 75 (2007) 065024, arXiv:hep-th/0611243.
  71. L. Di Luzio, F. Mescia, and E. Nardi, “Window for preferred axion models,” Phys. Rev. D 96 no. 7, (2017) 075003, arXiv:1705.05370 [hep-ph].
  72. L. Di Luzio, F. Mescia, and E. Nardi, “Redefining the Axion Window,” Phys. Rev. Lett. 118 no. 3, (2017) 031801, arXiv:1610.07593 [hep-ph].
  73. D. Tong, “Line Operators in the Standard Model,” JHEP 07 (2017) 104, arXiv:1705.01853 [hep-th].
  74. J. Davighi, B. Gripaios, and N. Lohitsiri, “Global anomalies in the Standard Model(s) and Beyond,” JHEP 07 (2020) 232, arXiv:1910.11277 [hep-th].
  75. J. Kang, M. A. Luty, and S. Nasri, “The Relic abundance of long-lived heavy colored particles,” JHEP 09 (2008) 086, arXiv:hep-ph/0611322.
  76. C. Jacoby and S. Nussinov, “The Relic Abundance of Massive Colored Particles after a Late Hadronic Annihilation Stage,” arXiv:0712.2681 [hep-ph].
  77. B. A. Dobrescu, “The Strong CP problem versus Planck scale physics,” Phys. Rev. D 55 (1997) 5826–5833, arXiv:hep-ph/9609221.
  78. J. E. Kim, “A Composite Invisible Axion,” Phys. Rev. D 31 (1985) 1733.
  79. M. Redi and R. Sato, “Composite Accidental Axions,” JHEP 05 (2016) 104, arXiv:1602.05427 [hep-ph].
  80. M. B. Gavela, M. Ibe, P. Quilez, and T. T. Yanagida, “Automatic Peccei–Quinn symmetry,” Eur. Phys. J. C 79 no. 6, (2019) 542, arXiv:1812.08174 [hep-ph].
  81. R. Contino, A. Podo, and F. Revello, “Chiral models of composite axions and accidental Peccei-Quinn symmetry,” JHEP 04 (2022) 180, arXiv:2112.09635 [hep-ph].
  82. S. Nakagawa, Y. Nakai, M. Yamada, and Y. Zhang, “Dynamics of Superconformal Axion: Quality and Scalegenesis,” arXiv:2309.06964 [hep-ph].
  83. J. E. Kim and H. P. Nilles, “The mu Problem and the Strong CP Problem,” Phys. Lett. B 138 (1984) 150–154.
  84. K. S. Babu, I. Gogoladze, and K. Wang, “Stabilizing the axion by discrete gauge symmetries,” Phys. Lett. B 560 (2003) 214–222, arXiv:hep-ph/0212339.
  85. K. S. Babu, I. Gogoladze, and K. Wang, “Natural R parity, μ𝜇\muitalic_μ-term, and fermion mass hierarchy from discrete gauge symmetries,” Nucl. Phys. B 660 (2003) 322–342, arXiv:hep-ph/0212245.
  86. H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Schieren, K. Schmidt-Hoberg, and P. K. S. Vaudrevange, “A unique ℤ4Rsuperscriptsubscriptℤ4𝑅\mathbb{Z}_{4}^{R}blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT symmetry for the MSSM,” Phys. Lett. B 694 (2011) 491–495, arXiv:1009.0905 [hep-ph].
  87. H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Schieren, K. Schmidt-Hoberg, and P. K. S. Vaudrevange, “Discrete R symmetries for the MSSM and its singlet extensions,” Nucl. Phys. B 850 (2011) 1–30, arXiv:1102.3595 [hep-ph].
  88. H. Baer, V. Barger, and D. Sengupta, “Gravity safe, electroweak natural axionic solution to strong C⁢P𝐶𝑃CPitalic_C italic_P and SUSY μ𝜇\muitalic_μ problems,” Phys. Lett. B 790 (2019) 58–63, arXiv:1810.03713 [hep-ph].
  89. A. Hook, “Solving the Hierarchy Problem Discretely,” Phys. Rev. Lett. 120 no. 26, (2018) 261802, arXiv:1802.10093 [hep-ph].
  90. L. Di Luzio, B. Gavela, P. Quilez, and A. Ringwald, “An even lighter QCD axion,” JHEP 05 (2021) 184, arXiv:2102.00012 [hep-ph].
  91. M. B. Green and J. H. Schwarz, “Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory,” Phys. Lett. B 149 (1984) 117–122.
  92. M. Dine, N. Seiberg, and E. Witten, “Fayet-Iliopoulos Terms in String Theory,” Nucl. Phys. B 289 (1987) 589–598.
  93. S. M. Barr, “Harmless Axions in Superstring Theories,” Phys. Lett. B 158 (1985) 397–400.
  94. J. E. Kim, “The Strong CP Problem in Orbifold Compactifications and an SU(3) ×\times× SU(2) ×\times× U(1)n𝑛{}^{n}start_FLOATSUPERSCRIPT italic_n end_FLOATSUPERSCRIPT Model,” Phys. Lett. B 207 (1988) 434–440.
  95. K. Choi, K. S. Jeong, K.-I. Okumura, and M. Yamaguchi, “Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry,” JHEP 06 (2011) 049, arXiv:1104.3274 [hep-ph].
  96. M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo, and R. Valandro, “Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter,” JHEP 05 (2014) 001, arXiv:1312.0014 [hep-th].
  97. G. Honecker and W. Staessens, “On axionic dark matter in Type IIA string theory,” Fortsch. Phys. 62 (2014) 115–151, arXiv:1312.4517 [hep-th].
  98. K. Choi, K. S. Jeong, and M.-S. Seo, “String theoretic QCD axions in the light of PLANCK and BICEP2,” JHEP 07 (2014) 092, arXiv:1404.3880 [hep-th].
  99. E. I. Buchbinder, A. Constantin, and A. Lukas, “Heterotic QCD axion,” Phys. Rev. D 91 no. 4, (2015) 046010, arXiv:1412.8696 [hep-th].
  100. H.-C. Cheng and D. E. Kaplan, “Axions and a gauged Peccei-Quinn symmetry,” arXiv:hep-ph/0103346.
  101. A. S. Chou et al., “Snowmass Cosmic Frontier Report,” in Snowmass 2021. 11, 2022. arXiv:2211.09978 [hep-ex].
  102. C. Csaki, M. Schmaltz, and W. Skiba, “Confinement in N=1 SUSY gauge theories and model building tools,” Phys. Rev. D 55 (1997) 7840–7858, arXiv:hep-th/9612207.
Citations (2)

Summary

We haven't generated a summary for this paper yet.