Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ruling out light axions: the writing is on the wall (2211.14635v5)

Published 26 Nov 2022 in hep-ph and astro-ph.CO

Abstract: We revisit the domain wall problem for QCD axion models with more than one quark charged under the Peccei-Quinn symmetry. Symmetry breaking during or after inflation results in the formation of a domain wall network which would cause cosmic catastrophe if it comes to dominate the Universe. The network may be made unstable by invoking a tilt' in the axion potential due to Planck scale suppressed non-renormalisable operators. Alternatively the random walk of the axion field during inflation can generate abias' favouring one of the degenerate vacua, but we find that this mechanism is in practice irrelevant. Consideration of the axion abundance generated by the decay of the wall network then requires the Peccei-Quinn scale to be rather low -- thus ruling out e.g. the DFSZ axion with mass below 11 meV, where most experimental searches are in fact focussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. R. L. Workman, Review of Particle Physics, PTEP 2022, 083C01 (2022), 10.1093/ptep/ptac097.
  2. CPnormal-CP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977), 10.1103/PhysRevLett.38.1440.
  3. Constraints imposed by CPnormal-CP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. D 16, 1791 (1977), 10.1103/PhysRevD.16.1791.
  4. C. Abel et al., Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124(8), 081803 (2020), 10.1103/PhysRevLett.124.081803, 2001.11966.
  5. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223 (1978), 10.1103/PhysRevLett.40.223.
  6. F. Wilczek, Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978), 10.1103/PhysRevLett.40.279.
  7. Cosmology of the Invisible Axion, Phys. Lett. 120B, 127 (1983), 10.1016/0370-2693(83)90637-8.
  8. L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. 120B, 133 (1983), 10.1016/0370-2693(83)90638-X.
  9. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. 120B, 137 (1983), 10.1016/0370-2693(83)90639-1.
  10. T. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9, 1387 (1976), 10.1088/0305-4470/9/8/029.
  11. T. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67, 183 (1980), 10.1016/0370-1573(80)90091-5.
  12. A. Vilenkin, Cosmic Strings, Phys. Rev. D 24, 2082 (1981), 10.1103/PhysRevD.24.2082.
  13. The QCD axion, precisely, JHEP 01, 034 (2016), 10.1007/JHEP01(2016)034, 1511.02867.
  14. S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539(7627), 69 (2016), 10.1038/nature20115, 1606.07494.
  15. P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48, 1156 (1982), 10.1103/PhysRevLett.48.1156.
  16. A. Vilenkin and A. E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48, 1867 (1982), 10.1103/PhysRevLett.48.1867.
  17. S. Chang, C. Hagmann and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59, 023505 (1999), 10.1103/PhysRevD.59.023505, hep-ph/9807374.
  18. J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43, 103 (1979), 10.1103/PhysRevLett.43.103.
  19. M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166, 493 (1980), 10.1016/0550-3213(80)90209-6.
  20. A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31, 260 (1980).
  21. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104, 199 (1981), 10.1016/0370-2693(81)90590-6.
  22. Y. B. Zeldovich, I. Y. Kobzarev and L. B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67, 3 (1974).
  23. Dark matter from axion strings with adaptive mesh refinement, Nature Commun. 13(1), 1049 (2022), 10.1038/s41467-022-28669-y, 2108.05368.
  24. M. Gorghetto, E. Hardy and G. Villadoro, More axions from strings, SciPost Phys. 10(2), 050 (2021), 10.21468/SciPostPhys.10.2.050, 2007.04990.
  25. Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci. 65, 485 (2015), 10.1146/annurev-nucl-102014-022120, 1602.00039.
  26. P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. 93(1), 015004 (2021), 10.1103/RevModPhys.93.015004, 2003.02206.
  27. D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), 10.1016/j.physrep.2016.06.005, 1510.07633.
  28. Simulations of axionlike particles in the postinflationary scenario, Phys. Rev. D 105(5), 055025 (2022), 10.1103/PhysRevD.105.055025, 2112.05117.
  29. S. M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46, 539 (1992), 10.1103/PhysRevD.46.539.
  30. Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282, 132 (1992), 10.1016/0370-2693(92)90491-L, hep-ph/9203206.
  31. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B282, 137 (1992), 10.1016/0370-2693(92)90492-M, hep-th/9202003.
  32. S. E. Larsson, S. Sarkar and P. L. White, Evading the cosmological domain wall problem, Phys. Rev. D55, 5129 (1997), 10.1103/PhysRevD.55.5129, hep-ph/9608319.
  33. C. A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97, 131801 (2006), 10.1103/PhysRevLett.97.131801, hep-ex/0602020.
  34. J. M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D92(9), 092003 (2015), 10.1103/PhysRevD.92.092003, 1509.04411.
  35. M. Hindmarsh, Analytic scaling solutions for cosmic domain walls, Phys. Rev. Lett. 77, 4495 (1996), 10.1103/PhysRevLett.77.4495, hep-ph/9605332.
  36. Biased domain walls, Phys. Rev. D 53, 4237 (1996), 10.1103/PhysRevD.53.4237.
  37. M. Hindmarsh, Level set method for the evolution of defect and brane networks, Phys. Rev. D68, 043510 (2003), 10.1103/PhysRevD.68.043510, hep-ph/0207267.
  38. H. Casini and S. Sarkar, No cosmological domain wall problem for weakly coupled fields, Phys. Rev. D65, 025002 (2002), 10.1103/PhysRevD.65.025002, hep-ph/0106272.
  39. Stability of domain wall network with initial inflationary fluctuations, and its implications for cosmic birefringence (2022), 2211.06849.
  40. P. W. Graham and A. Scherlis, Stochastic axion scenario, Phys. Rev. D98(3), 035017 (2018), 10.1103/PhysRevD.98.035017, 1805.07362.
  41. QCD axion window and low-scale inflation, Phys. Rev. D98(1), 015042 (2018), 10.1103/PhysRevD.98.015042, 1805.08763.
  42. A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93(8), 085031 (2016), 10.1103/PhysRevD.93.085031, [Addendum: Phys.Rev.D 94, 049908 (2016)], 1512.06436.
  43. E. Armengaud et al., Physics potential of the International Axion Observatory (IAXO), JCAP 06, 047 (2019), 10.1088/1475-7516/2019/06/047, 1904.09155.
  44. Axion detection through resonant photon-photon collisions, Phys. Rev. D 101(9), 095018 (2020), 10.1103/PhysRevD.101.095018, 2001.03392.
  45. Light-shining-through-wall axion detection experiments with a stimulating laser, Phys. Rev. D 105(3), 035031 (2022), 10.1103/PhysRevD.105.035031, 2109.14663.
  46. Observing light-by-light scattering in vacuum with an asymmetric photon collider, Phys. Rev. D 104(11), L111101 (2021), 10.1103/PhysRevD.104.L111101, 2101.02671.
  47. L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys. Rev. Lett. 118(3), 031801 (2017), 10.1103/PhysRevLett.118.031801, 1610.07593.
  48. S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59, 1493 (1996), 10.1088/0034-4885/59/12/001, hep-ph/9602260.
  49. A. A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. 117B, 175 (1982), 10.1016/0370-2693(82)90541-X.
  50. Z. Lalak and S. Thomas, Domain wall formation in the postinflationary universe, Phys. Lett. B306, 10 (1993), 10.1016/0370-2693(93)91130-F, hep-ph/9303250.
  51. T. Kobayashi, R. Kurematsu and F. Takahashi, Isocurvature Constraints and Anharmonic Effects on QCD Axion Dark Matter, JCAP 09, 032 (2013), 10.1088/1475-7516/2013/09/032, 1304.0922.
  52. Axionic domain wall production during inflation, Phys. Lett. B 246, 353 (1990), 10.1016/0370-2693(90)90613-B.
  53. Primordial Black Holes from the QCD axion, Phys. Rev. Lett. 122(10), 101301 (2019), 10.1103/PhysRevLett.122.101301, 1807.01707.
  54. A. Caputo and M. Reig, Cosmic implications of a low-scale solution to the axion domain wall problem, Phys. Rev. D 100(6), 063530 (2019), 10.1103/PhysRevD.100.063530, 1905.13116.
  55. E. P. S. Shellard, Cosmic String Interactions, Nucl. Phys. B 283, 624 (1987), 10.1016/0550-3213(87)90290-2.
  56. N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), 10.1051/0004-6361/201833910, [Erratum: Astron.Astrophys. 652, C4 (2021)], 1807.06209.
  57. T. Hiramatsu, M. Kawasaki and K. Saikawa, On the estimation of gravitational wave spectrum from cosmic domain walls, JCAP 02, 031 (2014), 10.1088/1475-7516/2014/02/031, 1309.5001.
  58. M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91(6), 065014 (2015), 10.1103/PhysRevD.91.065014, 1412.0789.
  59. P. Sikivie, Axion Cosmology, Lect. Notes Phys. 741, 19 (2008), 10.1007/978-3-540-73518-2_2, astro-ph/0610440.
  60. K. Saikawa, A review of gravitational waves from cosmic domain walls, Universe 3(2), 40 (2017), 10.3390/universe3020040, 1703.02576.
  61. Novel cosmological bounds on thermally-produced axion-like particles, JCAP 09, 021 (2022), 10.1088/1475-7516/2022/09/021, 2205.01637.
  62. Cosmological bound on the QCD axion mass, redux, JCAP 09, 022 (2022), 10.1088/1475-7516/2022/09/022, 2205.07849.
  63. A. Notari, F. Rompineve and G. Villadoro, Improved hot dark matter bound on the QCD axion (2022), 2211.03799.
  64. G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741, 51 (2008), 10.1007/978-3-540-73518-2_3, hep-ph/0611350.
  65. J. H. Chang, R. Essig and S. D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle, JHEP 09, 051 (2018), 10.1007/JHEP09(2018)051, 1803.00993.
  66. Stellar Recipes for Axion Hunters, JCAP 10, 010 (2017), 10.1088/1475-7516/2017/10/010, 1708.02111.
  67. A. A. Starobinsky and J. Yokoyama, Equilibrium state of a self-interacting scalar field in the de sitter background, Phys. Rev. D 50, 6357 (1994), 10.1103/PhysRevD.50.6357.
Citations (16)

Summary

We haven't generated a summary for this paper yet.