Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relocating thermal stimuli to the proximal phalanx may not affect vibrotactile sensitivity on the fingertip (2312.07261v1)

Published 12 Dec 2023 in cs.HC, cs.SY, and eess.SY

Abstract: Wearable devices that relocate tactile feedback from fingertips can enable users to interact with their physical world augmented by virtual effects. While studies have shown that relocating same-modality tactile stimuli can influence the one perceived at the fingertip, the interaction of cross-modal tactile stimuli remains unclear. Here, we investigate how thermal cues applied on the index finger's proximal phalanx affect vibrotactile sensitivity at the fingertip of the same finger when employed at varying contact pressures. We designed a novel wearable device that can deliver thermal stimuli at adjustable contact pressures on the proximal phalanx. Utilizing this device, we measured the detection thresholds of fifteen participants for 250 Hz sinusoidal vibration applied on the fingertip while concurrently applying constant cold and warm stimuli at high and low contact pressures to the proximal phalanx. Our results revealed no significant differences in detection thresholds across conditions. These preliminary findings suggest that applying constant thermal stimuli to other skin locations does not affect fingertip vibrotactile sensitivity, possibly due to perceptual adaptation. However, the influence of dynamic multisensory tactile stimuli remains an open question for future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli, “A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features,” in 2016 IEEE Haptics Symposium (HAPTICS).   IEEE, 2016, pp. 140–146.
  2. T. Murakami, T. Person, C. L. Fernando, and K. Minamizawa, “Altered touch: miniature haptic display with force, thermal and tactile feedback for augmented haptics,” in ACM SIGGRAPH 2017 Posters, 2017, pp. 1–2.
  3. G. Spagnoletti, L. Meli, T. L. Baldi, G. Gioioso, C. Pacchierotti, and D. Prattichizzo, “Rendering of pressure and textures using wearable haptics in immersive vr environments,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).   IEEE, 2018, pp. 691–692.
  4. S.-Y. Teng and P. Lopes, “Xr needs” mixed feelings” engineering haptic devices that work in both virtual and physical realities,” XRDS: Crossroads, The ACM Magazine for Students, vol. 29, no. 1, pp. 44–47, 2022.
  5. C. Pacchierotti, G. Salvietti, I. Hussain, L. Meli, and D. Prattichizzo, “The hring: A wearable haptic device to avoid occlusions in hand tracking,” in 2016 IEEE Haptics Symposium (HAPTICS).   IEEE, 2016, pp. 134–139.
  6. G. Gioioso, M. Pozzi, M. Aurilio, B. Peccerillo, G. Spagnoletti, and D. Prattichizzo, “Using wearable haptics for thermal discrimination in virtual reality scenarios,” in International AsiaHaptics conference.   Springer, 2018, pp. 144–148.
  7. J. E. Palmer, M. Sarac, A. A. Garza, and A. M. Okamura, “Haptic feedback relocation from the fingertips to the wrist for two-finger manipulation in virtual reality,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 628–633.
  8. E. Pezent, A. Gupta, H. Duhaime, M. O’Malley, A. Israr, M. Samad, S. Robinson, P. Agarwal, H. Benko, and N. Colonnese, “Explorations of wrist haptic feedback for ar/vr interactions with tasbi,” in Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, 2022, pp. 1–5.
  9. E. Pezent, A. Macklin, J. M. Yau, N. Colonnese, and M. K. O’Malley, “Multisensory pseudo-haptics for rendering manual interactions with virtual objects,” Advanced Intelligent Systems, p. 2200303, 2023.
  10. Y. Tanaka, A. Shen, A. Kong, and P. Lopes, “Full-hand electro-tactile feedback without obstructing palmar side of hand,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 2023, pp. 1–15.
  11. R. F. Friesen and Y. Vardar, “Perceived realism of virtual textures rendered by a vibrotactile wearable ring display,” IEEE Transactions on Haptics, 2023.
  12. C. Gaudeni, L. Meli, L. Jones, and D. Prattichizzo, “Presenting surface features using a haptic ring: A psychophysical study on relocating vibrotactile feedback,” IEEE Transactions on Haptics, vol. 12, no. 4, pp. 428–437, 2019.
  13. X. De Tinguy, C. Pacchierotti, M. Marchal, and A. Lécuyer, “Enhancing the stiffness perception of tangible objects in mixed reality using wearable haptics,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).   IEEE, 2018, pp. 81–90.
  14. S. V. Salazar, C. Pacchierotti, X. de Tinguy, A. Maciel, and M. Marchal, “Altering the stiffness, friction, and shape perception of tangible objects in virtual reality using wearable haptics,” IEEE transactions on haptics, vol. 13, no. 1, pp. 167–174, 2020.
  15. S. Asano, S. Okamoto, and Y. Yamada, “Vibrotactile stimulation to increase and decrease texture roughness,” IEEE Transactions on Human-Machine Systems, vol. 45, no. 3, pp. 393–398, 2014.
  16. M. Jamalzadeh, B. Güçlü, Y. Vardar, and C. Basdogan, “Effect of remote masking on detection of electrovibration,” in 2019 IEEE World Haptics Conference (WHC).   IEEE, 2019, pp. 229–234.
  17. B. G. Green, “The effect of skin temperature on vibrotactile sensitivity,” Perception & Psychophysics, vol. 21, no. 3, pp. 243–248, 1977.
  18. E. Klinenberg, Y. So, and D. Rempel, “Temperature effects on vibrotactile sensitivity threshold measurements: implications for carpal tunnel screening tests,” The Journal of hand surgery, vol. 21, no. 1, pp. 132–137, 1996.
  19. I. Hirosawa, K. Nishiyama, and S. Watanabe, “Temporary threshold shift of temperature sensation caused by vibration exposure,” Occupational and Environmental Health, vol. 63, pp. 531–535, 1992.
  20. L. Burström, M. Hagberg, R. Lundström, and T. Nilsson, “Influence of vibration exposure on tactile and thermal perception thresholds,” Occupational Medicine, vol. 59, no. 3, pp. 174–179, 03 2009. [Online]. Available: https://doi.org/10.1093/occmed/kqp032
  21. A. Singhal and L. A. Jones, “Perceptual interactions in thermo-tactile displays,” in 2017 IEEE World Haptics Conference (WHC), 2017, pp. 90–95.
  22. J. Park, J. Kim, C. Park, S. Oh, J. Park, and S. Choi, “A preliminary study on the perceptual independence between vibrotactile and thermal senses,” in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications.   Springer, 2022, pp. 75–83.
  23. J. C. Stevens, B. C. Green, and A. S. Krimsley, “Punctate pressure sensitivity: effects of skin temperature,” Sensory Processes, no. 1, pp. 238–243, 1977.
  24. J. C. Stevens, “Temperature can sharpen tactile acuity,” Perception and Psychophysics, no. 31, pp. 577–580, 1982.
  25. B. Green, S. J. Lederman, and J. C. Stevens, “The effect of skin temperature on the perception of roughness,” Sensory Processes, vol. 3, no. 4, pp. 327–333, 1979.
  26. Y. Liu, S. Nishikawa, Y. a. Seong, R. Niiyama, and Y. Kuniyoshi, “Thermocaress: A wearable haptic device with illusory moving thermal stimulation,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ser. CHI ’21.   New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3411764.3445777
  27. H. Son, H. Wang, Y. Singhal, and J. R. Kim, “Upper body thermal referral and tactile masking for localized feedback,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 5, pp. 2211–2219, 2023.
  28. T. Yoshioka, S. J. Bensmaia, J. C. Craig, and S. S. Hsiao, “Texture perception through direct and indirect touch: An analysis of perceptual space for tactile textures in two modes of exploration,” Somatosensory & motor research, vol. 24, no. 1-2, pp. 53–70, 2007.
  29. J. M. Lockhart, H. O. Kiess, and T. J. Clegg, “Effect of rate and level of lowered finger surface temperature on manual performance.” Journal of Applied Psychology, vol. 60, no. 1, p. 106, 1975.
  30. M. Gabardi, D. Leonardis, M. Solazzi, and A. Frisoli, “Development of a miniaturized thermal module designed for integration in a wearable haptic device,” in 2018 IEEE Haptics Symposium (HAPTICS).   IEEE, 2018, pp. 100–105.
  31. B. L. Kodak and Y. Vardar, “Feelpen: A haptic stylus displaying multimodal texture feels on touchscreens,” IEEE/ASME Transactions on Mechatronics, 2023.
  32. L. Peters, G. Serhat, and Y. Vardar, “Thermosurf: Thermal display technology for dynamic and multi-finger interactions,” Ieee Access, vol. 11, pp. 12 004–12 014, 2023.
  33. L. A. Jones and N. B. Sarter, “Tactile displays: Guidance for their design and application,” Human factors, vol. 50, no. 1, pp. 90–111, 2008.
  34. S. Oh and S. Choi, “Effects of contact force and vibration frequency on vibrotactile sensitivity during active touch,” IEEE Transactions on Haptics, vol. 12, no. 4, pp. 645–651, 2019.
  35. H.-N. Ho, “Material recognition based on thermal cues: Mechanisms and applications,” Temperature, vol. 5, no. 1, pp. 36–55, 2018.
  36. J. J. Zwislocki and E. M. Relkin, “On a psychophysical transformed-rule up and down method converging on a 75% level of correct responses,” Proceedings of the National Academy of Sciences, vol. 98, no. 8, pp. 4811–4814, 2001.
  37. A. BenSaïda. (2023) Shapiro-wilk and shapiro-francia normality tests. MATLAB Central File Exchange. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests
  38. J. H. Skillings and G. A. Mack, “On the use of a friedman-type statistic in balanced and unbalanced block designs,” Technometrics, vol. 23, no. 2, pp. 171–177, 1981.
  39. J. Fagius and L. K. Wahren, “Variability of sensory threshold determination in clinical use,” Journal of the neurological sciences, vol. 51, no. 1, pp. 11–27, 1981.
  40. R. A. S. A. Vania Apkarian and S. J. Bolanowski, “Heat-induced pain diminishes vibrotactile perception: A touch gate,” Somatosensory & Motor Research, vol. 11, no. 3, pp. 259–267, 1994, pMID: 7887057. [Online]. Available: https://doi.org/10.3109/08990229409051393
Citations (1)

Summary

We haven't generated a summary for this paper yet.