Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the spatial Acuity of vibrotactile Stimuli: A new Approach to determine universal and individual Thresholds (2308.05497v2)

Published 10 Aug 2023 in cs.HC and q-bio.NC

Abstract: Tactile perception is an increasingly popular gateway in human-machine interaction, yet universal design guidelines for tactile displays are still lacking, largely due to the absence of methods to measure sensibility across skin areas. In this study, we address this gap by developing and evaluating two fully automated vibrotactile tasks that require subjects to discriminate the position of vibrotactile stimuli using a two-interval forced-choice procedure (2IFC). Of the two methodologies, one was initially validated through a preliminary study involving 13 participants. Subsequently, we applied the validated and improved vibrotactile testing procedure to a larger sample of 23 participants, enabling a direct and valid comparison with static perception. Our findings reveal a significantly finer spatial acuity for static stimuli perception compared to vibrotactile stimuli perception from a stimulus separation of 15 mm onwards. This study introduces a novel method for generating both universal thresholds and individual person-specific data for vibratory perception, marking a critical step towards the development of functional vibrotactile displays. The results underline the need for further research in this area and provide a foundation for the development of universal design guidelines for tactile displays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Haptic interfaces for virtual reality: Challenges and research directions. IEEE Access, 9:112145–112162, 2021. doi:10.1109/ACCESS.2021.3103598.
  2. Haptic perception: a tutorial. Attention, perception & psychophysics, 71(7):1439–1459, 2009. doi:10.3758/APP.71.7.1439.
  3. Tactile feedback on flat surfaces for the visually impaired. In Joseph A. Konstan, Ed H. Chi, and Kristina Höök, editors, CHI ’12 Extended Abstracts on Human Factors in Computing Systems, pages 1571–1576, New York, NY, USA, 2012. ACM. ISBN 9781450310161. doi:10.1145/2212776.2223674.
  4. A navigation aid for the blind using tactile-visual sensory substitution. Conference proceedings : … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2006:6289–6292, 2006. ISSN 1557-170X. doi:10.1109/IEMBS.2006.259473.
  5. Vibrotactile sensory substitution on personal navigation: Remotely controlled vibrotactile feedback wearable system to aid visually impaired. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1–5. IEEE, 2016. ISBN 978-1-4673-9172-6. doi:10.1109/MeMeA.2016.7533768.
  6. A wearable navigation aid for blind people using a vibrotactile information transfer system. In 2013 ICME International Conference on Complex Medical Engineering, pages 13–18. IEEE, 2013. ISBN 978-1-4673-2971-2. doi:10.1109/ICCME.2013.6548203.
  7. A substitute vision system for providing 3d perception and gps navigation via electro-tactile stimulation. 2005.
  8. Tactile sensing system using electro-tactile feedback. In 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pages 295–299. IEEE, 2015. ISBN 978-1-4799-6466-6. doi:10.1109/ICARA.2015.7081163.
  9. A. L. Dellon. The moving two-point discrimination test: clinical evaluation of the quickly adapting fiber/receptor system. The Journal of hand surgery, 3(5):474–481, 1978a. ISSN 0363-5023. doi:10.1016/s0363-5023(78)80143-9.
  10. Two-point orientation discrimination versus the traditional two-point test for tactile spatial acuity assessment. Frontiers in human neuroscience, 7:579, 2013. ISSN 1662-5161. doi:10.3389/fnhum.2013.00579.
  11. Bayesian adaptive estimation of psychometric slope and threshold. Vision research, 39(16):2729–2737, 1999. ISSN 0042-6989. doi:10.1016/s0042-6989(98)00285-5.
  12. Robert F. Schmidt, editor. Physiologie des Menschen: Mit Pathophysiologie. Springer-Lehrbuch. Springer-Medizin-Verl., Heidelberg, 30., neu bearb. und aktualisierte aufl. edition, 2007. ISBN 3540329080.
  13. Vibrotactile localization on the arm: effects of place, space, and age. Perception & psychophysics, 65(7):1058–1077, 2003. ISSN 0031-5117. doi:10.3758/bf03194834.
  14. Relative vibrotactile spatial acuity of the torso. Experimental brain research, 235(11):3505–3515, 2017. doi:10.1007/s00221-017-5073-6.
  15. Vibrotactile localization on the abdomen: effects of place and space. Perception & psychophysics, 66(6):970–987, 2004. ISSN 0031-5117. doi:10.3758/bf03194989.
  16. Engineering haptic devices. 2023. doi:10.1007/978-3-031-04536-3.
  17. A. L. Dellon. The moving two-point discrimination test: clinical evaluation of the quickly adapting fiber/receptor system. The Journal of hand surgery, 3(5):474–481, 1978b. ISSN 0363-5023. doi:10.1016/s0363-5023(78)80143-9.
  18. The psychometric function: I. fitting, sampling, and goodness of fit. Perception & psychophysics, 63(8):1293–1313, 2001. ISSN 0031-5117. doi:10.3758/bf03194544.
  19. Matthew Brand. Pattern discovery via entropy minimization. In Seventh International Workshop on Artificial Intelligence and Statistics, pages 10–17. PMLR, 1999.
  20. Modeling 2-alternative forced-choice tasks: Accounting for both magnitude and difference effects. Cognitive psychology, 103:1–22, 2018. doi:10.1016/j.cogpsych.2018.02.002.
  21. S. A. Klein. Measuring, estimating, and understanding the psychometric function: a commentary. Perception & psychophysics, 63(8):1421–1455, 2001. ISSN 0031-5117. doi:10.3758/bf03194552.
  22. Two-, three-, and four-interval forced-choice staircase procedures: estimator bias and efficiency. The Journal of the Acoustical Society of America, 88(2):732–740, 1990. ISSN 0001-4966. doi:10.1121/1.399776.
  23. The feasibility of coin motors for use in a vibrotactile display for the blind. Artificial organs, 39(6):480–491, 2015. doi:10.1111/aor.12414.
  24. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN 1441412697. doi:10.5555/1593511.
  25. Tactile perception in developmental dyslexia: a psychophysical study using gratings. Neuropsychologia, 37(10):1201–1211, 1999. ISSN 0028-3932. doi:10.1016/s0028-3932(99)00013-5.
  26. Detection theory: A user’s guide. Psychology press, 2004.
  27. David C Howell. Statistical methods for psychology. Cengage Learning, 2012.
  28. On percentile norms in neuropsychology: proposed reporting standards and methods for quantifying the uncertainty over the percentile ranks of test scores. The Clinical neuropsychologist, 23(7):1173–1195, 2009. doi:10.1080/13854040902795018.
  29. Signal detection theory and psychophysics. 1966.
  30. Measuring relative vibrotactile spatial acuity: effects of tactor type, anchor points and tactile anisotropy. Experimental brain research, 236(12):3405–3416, 2018. doi:10.1007/s00221-018-5387-z.
  31. Tactile spatial discrimination on the torso using vibrotactile and force stimulation. Experimental brain research, 239(11):3175–3188, 2021. doi:10.1007/s00221-021-06181-x.
  32. Vibration propagation on the skin of the arm. Applied sciences (Basel, Switzerland), 9(20), 2019. ISSN 2076-3417. doi:10.3390/app9204329.

Summary

We haven't generated a summary for this paper yet.