Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

$\mathcal{N}=3$ conformal superspace in four dimensions (2312.07242v2)

Published 12 Dec 2023 in hep-th, math-ph, and math.MP

Abstract: We develop a superspace formulation for ${\cal N}=3$ conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group $\mathsf{SU}(2,2|3)$. Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $\nabla_A = (\nabla_a,\nabla_\alphai,\bar{\nabla}_i{\dot \alpha})$ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor $W_\alpha$ of dimension $+1/2$ and its conjugate. Associated with $W_\alpha$ is its primary descendant $Bi{}_j$ of dimension $+2$, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for ${\cal N}=3$ conformal supergravity. We describe the model for linearised $\mathcal{N}=3$ conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses $\mathsf{U}(1)$ duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the $\mathsf{U}(3)$ superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called $\mathsf{SU}(3) $ superspace, which can also be used to describe ${\mathcal N}=3$ conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell ${\mathcal N}=3$ super Yang-Mills theory coupled to conformal supergravity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Properties of conformal supergravity,” Phys. Rev. D 17, 3179 (1978); P. K. Townsend and P. van Nieuwenhuizen, “Simplifications of conformal cupergravity,” Phys. Rev. D 19, 3166 (1979).
  2. E. Bergshoeff, M. de Roo and B. de Wit, “Extended conformal supergravity,” Nucl. Phys. B 182, 173 (1981).
  3. D. Butter, F. Ciceri, B. de Wit and B. Sahoo, “Construction of all N=4 conformal supergravities,” Phys. Rev. Lett. 118, no.8, 081602 (2017) [arXiv:1609.09083 [hep-th]].
  4. D. Butter, F. Ciceri and B. Sahoo, “N=4𝑁4N=4italic_N = 4 conformal supergravity: the complete actions,” JHEP 01, 029 (2020) [arXiv:1910.11874 [hep-th]].
  5. M. Kaku, P. K. Townsend, “Poincaré supergravity as broken superconformal gravity,” Phys. Lett.  B76, 54 (1978).
  6. S. Ferrara, M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Gauging the graded conformal group with unitary internal symmetries,” Nucl. Phys. B 129, 125 (1977).
  7. B. de Wit and S. Ferrara, “On higher order invariants in extended supergravity,” Phys. Lett. B 81, 317 (1979).
  8. M. de Roo, “Matter coupling in N=4 supergravity,” Nucl. Phys. B 255, 515 (1985); “Gauged N=4 matter couplings,” Phys. Lett. B 156, 331(1985).
  9. E. S. Fradkin and A. A. Tseytlin, “Conformal anomaly in Weyl theory and anomaly free superconformal theories” Phys. Lett. B 134, 187 (1984); “Instanton zero modes and β𝛽\betaitalic_β-functions in conformal supergravity,” Phys. Lett. B 134, 307-312 (1984).
  10. E. S. Fradkin and A. A. Tseytlin, “Conformal supergravity,” Phys. Rept.  119, 233 (1985).
  11. H. Römer and P. van Nieuwenhuizen, “Axial anomalies in N=4𝑁4N=4italic_N = 4 conformal supergravity,” Phys. Lett. B 162, 290 (1985).
  12. A. A. Tseytlin, “On divergences in non-minimal N=4𝑁4N=4italic_N = 4 conformal supergravity,” J. Phys. A 50, no.48, 48LT01 (2017) [arXiv:1708.08727 [hep-th]].
  13. B. Zumino, “Supergravity and superspace,” in Recent Developments in Gravitation - Cargèse 1978, M. Lévy and S. Deser (Eds.), N.Y., Plenum Press, 1979, pp. 405–459.
  14. V. Ogievetsky and E. Sokatchev, “Structure of supergravity group,” Phys. Lett. B 79, 222 (1978).
  15. P. S. Howe and R. W. Tucker, “Scale invariance in superspace,” Phys. Lett. B 80, 138 (1978).
  16. W. Siegel, “Solution to constraints in Wess-Zumino supergravity formalism,” Nucl. Phys.  B 142, 301 (1978).
  17. D. Butter, “N=1 Conformal Superspace in Four Dimensions,” Annals Phys. 325, 1026-1080 (2010) [arXiv:0906.4399 [hep-th]].
  18. D. Butter, “N=2 Conformal Superspace in Four Dimensions,” JHEP 10, 030 (2011) [arXiv:1103.5914 [hep-th]].
  19. S. M. Kuzenko, E. S. N. Raptakis and G. Tartaglino-Mazzucchelli, “Superspace approaches to 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 supergravity,” [arXiv:2210.17088 [hep-th]].
  20. S. M. Kuzenko, E. S. N. Raptakis and G. Tartaglino-Mazzucchelli, “Covariant superspace approaches to 𝒩=2𝒩2{\cal N}=2caligraphic_N = 2 supergravity,” [arXiv:2211.11162 [hep-th]].
  21. A. S. Galperin, E. A. Ivanov, S. N. Kalitzin, V. Ogievetsky, E. Sokatchev, “Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace,” Class. Quant. Grav.  1, 469 (1984).
  22. U. Lindström and M. Roček, “New hyperkähler metrics and new supermultiplets,” Commun. Math. Phys.  115, 21 (1988).
  23. U. Lindström and M. Roček, “N=2 super Yang-Mills theory in projective superspace,” Commun. Math. Phys.  128, 191 (1990).
  24. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, “Unconstrained off-shell N=3 supersymmetric Yang-Mills theory,” Class. Quant. Grav. 2, 155 (1985).
  25. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, “N=3 supersymmetric gauge theory,” Phys. Lett. B 151, 215-218 (1985).
  26. A. A. Rosly and A. S. Schwarz, “Supersymmetry in a space with auxiliary dimensions,” Commun. Math. Phys.  105, 645 (1986).
  27. J. van Muiden and A. Van Proeyen, “The 𝒩𝒩\mathcal{N}caligraphic_N = 3 Weyl multiplet in four dimensions,” JHEP 01, 167 (2019) [arXiv:1702.06442 [hep-th]].
  28. S. Hegde, M. Mishra and B. Sahoo, “N = 3 conformal supergravity in four dimensions,” JHEP 04, 001 (2022) [arXiv:2104.07453 [hep-th]].
  29. D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: New off-shell formulation,” JHEP 09, 072 (2013) [arXiv:1305.3132 [hep-th]].
  30. D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: Off-shell actions,” JHEP 10, 073 (2013) [arXiv:1306.1205 [hep-th]].
  31. S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “N=6 superconformal gravity in three dimensions from superspace,” JHEP 01, 121 (2014) [arXiv:1308.5552 [hep-th]].
  32. D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in five dimensions: New approach and applications,” JHEP 1502, 111 (2015). [arXiv:1410.8682 [hep-th]].
  33. D. Butter, S. M. Kuzenko, J. Novak and S. Theisen, “Invariants for minimal conformal supergravity in six dimensions,” JHEP 1612, 072 (2016) [arXiv:1606.02921 [hep-th]].
  34. P. S. Howe, “A superspace approach to extended conformal supergravity,” Phys. Lett. B 100, 389 (1981); “Supergravity in superspace,” Nucl. Phys.  B 199, 309 (1982).
  35. P. S. Howe and U. Lindström, “Superconformal geometries and local twistors,” JHEP 04, 140 (2021) [arXiv:2012.03282 [hep-th]].
  36. M. F. Sohnius, “Bianchi identities for supersymmetric gauge theories,” Nucl. Phys. B 136, 461-474 (1978).
  37. P. S. Howe, K. S. Stelle and P. K. Townsend, “Supercurrents,” Nucl. Phys. B 192, 332 (1981).
  38. D. Hutchings, S. M. Kuzenko and E. S. N. Raptakis, “The N=2 superconformal gravitino multiplet,” Phys. Lett. B 845, 138132 (2023) [arXiv:2305.16029 [hep-th]].
  39. W. Siegel, “On-shell O(N𝑁Nitalic_N) supergravity in superspace,” Nucl. Phys. B 177, 325-332 (1981).
  40. S. M. Kuzenko and E. S. N. Raptakis, “Self-duality for N-extended superconformal gauge multiplets,” Nucl. Phys. B 997, 116378 (2023) [arXiv:2308.10660 [hep-th]].
  41. S. M. Kuzenko and E. S. N. Raptakis, “Duality-invariant superconformal higher-spin models,” Phys. Rev. D 104, no.12, 125003 (2021) [arXiv:2107.02001 [hep-th]].
  42. M. F. Hasler, “The three form multiplet in N=2 superspace,” Eur. Phys. J. C 1, 729 (1998) [hep-th/9606076].
  43. S. J. Gates Jr., “Ectoplasm has no topology: The prelude,” in Supersymmetries and Quantum Symmetries, J. Wess and E. A. Ivanov (Eds.), Springer, Berlin, 1999, p. 46, arXiv:hep-th/9709104; “Ectoplasm has no topology,” Nucl. Phys.  B 541, 615 (1999) [arXiv:hep-th/9809056].
  44. S. J. Gates Jr., M. T. Grisaru, M. E. Knutt-Wehlau and W. Siegel, “Component actions from curved superspace: Normal coordinates and ectoplasm,” Phys. Lett.  B 421, 203 (1998) [hep-th/9711151].
  45. C. Arias, W. D. Linch, III and A. K. Ridgway, “Superforms in six-dimensional superspace,” JHEP 05, 016 (2016) [arXiv:1402.4823 [hep-th]].
  46. S. J. Gates, W. D. Linch and S. Randall, “Superforms in five-dimensional N=1𝑁1N=1italic_N = 1 superspace,” JHEP 05, 049 (2015) [arXiv:1412.4086 [hep-th]].
  47. W. D. Linch and S. Randall, “Superspace de Rham complex and relative cohomology,” JHEP 09, 190 (2015) [arXiv:1412.4686 [hep-th]].
  48. S. J. Gates, Jr., S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Chiral supergravity actions and superforms,” Phys. Rev. D 80, 125015 (2009) [arXiv:0909.3918 [hep-th]].
  49. N. E. Koning, S. M. Kuzenko and E. S. N. Raptakis, “Embedding formalism for 𝒩𝒩\mathcal{N}caligraphic_N-extended AdS superspace in four dimensions,” JHEP 11, 063 (2023) [arXiv:2308.04135 [hep-th]].
  50. A. A. Rosly, “Super Yang-Mills constraints as integrability conditions,” in Proceedings of the International Seminar on Group Theoretical Methods in Physics,” (Zvenigorod, USSR, 1982), M. A. Markov (Ed.), Nauka, Moscow, 1983, Vol. 1, p. 263 (in Russian); English translation: in Group Theoretical Methods in Physics,” M. A. Markov, V. I. Man’ko and A. E. Shabad (Eds.), Harwood Academic Publishers, London, Vol. 3, 1987, p. 587.
  51. O. Aharony and M. Evtikhiev, “On four dimensional N = 3 superconformal theories,” JHEP 04, 040 (2016) [arXiv:1512.03524 [hep-th]].
  52. I. Garcia-Etxebarria and D. Regalado, “𝒩=3𝒩3\mathcal{N}=3caligraphic_N = 3 four dimensional field theories,” JHEP 03, 083 (2016) [arXiv:1512.06434 [hep-th]].
  53. E. A. Ivanov and B. M. Zupnik, “N=3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3-20 (2001) [arXiv:hep-th/0110074 [hep-th]].
  54. I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov and B. M. Zupnik, “Scale invariant low-energy effective action in N = 3 SYM theory,” Nucl. Phys. B 689, 91-107 (2004) [arXiv:hep-th/0403053 [hep-th]].
  55. I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov and B. M. Zupnik, “Superconformal N=3 SYM Low-Energy Effective Action,” JHEP 01, 001 (2012) [arXiv:1111.4145 [hep-th]].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.