Frozen Hayward-boson stars (2312.07224v1)
Abstract: Recently, the model of the Einstein-Bardeen theory minimally coupled to a complex, massive, free scalar field was investigated in arXiv:2305.19057. The introduction of a scalar field disrupts the formation of an event horizon, leaving only a type of solution referred to as a Bardeen-boson star. When the magnetic charge $q$ exceeds a certain critical value, the frozen Bardeen-boson star can be obtained with $\omega \rightarrow 0$. In this paper, we extend to the investigation of Einstein-Hayward-scalar model, and obtain the solution of frozen Hayward-boson star, including the ground and excited states. Furthermore, under the same parameters, it is interesting to observe that both the ground state and the excited states frozen stars have the same critical horizon and mass.
- A. Einstein, “On a stationary system with spherical symmetry consisting of many gravitating masses,” Annals Math. 40, 922-936 (1939) doi:10.2307/1968902.
- E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to nonlinear electrodynamics,” Phys. Rev. Lett. 80, 5056-5059 (1998) doi:10.1103/PhysRevLett.80.5056 [arXiv:gr-qc/9911046 [gr-qc]].
- E. Ayon-Beato and A. Garcia, “The Bardeen model as a nonlinear magnetic monopole,” Phys. Lett. B 493, 149-152 (2000) doi:10.1016/S0370-2693(00)01125-4 [arXiv:gr-qc/0009077 [gr-qc]].
- C. Lan, H. Yang, Y. Guo and Y. G. Miao, “Regular Black Holes: A Short Topic Review,” Int. J. Theor. Phys. 62, no.9, 202 (2023) doi:10.1007/s10773-023-05454-1 [arXiv:2303.11696 [gr-qc]].
- X. E. Wang, “From Bardeen-boson stars to black holes without event horizon,” [arXiv:2305.19057 [gr-qc]].
- F. E. Schunck and E. W. Mielke, “General relativistic boson stars,” Class. Quant. Grav. 20, R301-R356 (2003) doi:10.1088/0264-9381/20/20/201 [arXiv:0801.0307 [astro-ph]].
- S. L. Liebling and C. Palenzuela, “Dynamical boson stars,” Living Rev. Rel. 15, 6 (2012) doi:10.1007/s41114-023-00043-4 [arXiv:1202.5809 [gr-qc]].
- J. R. Oppenheimer and H. Snyder, “On Continued gravitational contraction,” Phys. Rev. 56, 455-459 (1939) doi:10.1103/PhysRev.56.455.
- R. Ruffini and J. A. Wheeler, “Introducing the black hole,” Phys. Today 24 (1971) no.1, 30
- S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96, 031103 (2006) doi:10.1103/PhysRevLett.96.031103 [arXiv:gr-qc/0506126 [gr-qc]].
- A. Bernal, J. Barranco, D. Alic and C. Palenzuela, “Multi-state Boson Stars,” Phys. Rev. D 81, 044031 (2010) doi:10.1103/PhysRevD.81.044031 [arXiv:0908.2435 [gr-qc]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.