Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Frozen Hayward-boson stars (2312.07224v1)

Published 12 Dec 2023 in gr-qc and hep-th

Abstract: Recently, the model of the Einstein-Bardeen theory minimally coupled to a complex, massive, free scalar field was investigated in arXiv:2305.19057. The introduction of a scalar field disrupts the formation of an event horizon, leaving only a type of solution referred to as a Bardeen-boson star. When the magnetic charge $q$ exceeds a certain critical value, the frozen Bardeen-boson star can be obtained with $\omega \rightarrow 0$. In this paper, we extend to the investigation of Einstein-Hayward-scalar model, and obtain the solution of frozen Hayward-boson star, including the ground and excited states. Furthermore, under the same parameters, it is interesting to observe that both the ground state and the excited states frozen stars have the same critical horizon and mass.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. A. Einstein, “On a stationary system with spherical symmetry consisting of many gravitating masses,” Annals Math. 40, 922-936 (1939) doi:10.2307/1968902.
  2. E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to nonlinear electrodynamics,” Phys. Rev. Lett. 80, 5056-5059 (1998) doi:10.1103/PhysRevLett.80.5056 [arXiv:gr-qc/9911046 [gr-qc]].
  3. E. Ayon-Beato and A. Garcia, “The Bardeen model as a nonlinear magnetic monopole,” Phys. Lett. B 493, 149-152 (2000) doi:10.1016/S0370-2693(00)01125-4 [arXiv:gr-qc/0009077 [gr-qc]].
  4. C. Lan, H. Yang, Y. Guo and Y. G. Miao, “Regular Black Holes: A Short Topic Review,” Int. J. Theor. Phys. 62, no.9, 202 (2023) doi:10.1007/s10773-023-05454-1 [arXiv:2303.11696 [gr-qc]].
  5. X. E. Wang, “From Bardeen-boson stars to black holes without event horizon,” [arXiv:2305.19057 [gr-qc]].
  6. F. E. Schunck and E. W. Mielke, “General relativistic boson stars,” Class. Quant. Grav. 20, R301-R356 (2003) doi:10.1088/0264-9381/20/20/201 [arXiv:0801.0307 [astro-ph]].
  7. S. L. Liebling and C. Palenzuela, “Dynamical boson stars,” Living Rev. Rel. 15, 6 (2012) doi:10.1007/s41114-023-00043-4 [arXiv:1202.5809 [gr-qc]].
  8. J. R. Oppenheimer and H. Snyder, “On Continued gravitational contraction,” Phys. Rev. 56, 455-459 (1939) doi:10.1103/PhysRev.56.455.
  9. R. Ruffini and J. A. Wheeler, “Introducing the black hole,” Phys. Today 24 (1971) no.1, 30
  10. S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96, 031103 (2006) doi:10.1103/PhysRevLett.96.031103 [arXiv:gr-qc/0506126 [gr-qc]].
  11. A. Bernal, J. Barranco, D. Alic and C. Palenzuela, “Multi-state Boson Stars,” Phys. Rev. D 81, 044031 (2010) doi:10.1103/PhysRevD.81.044031 [arXiv:0908.2435 [gr-qc]].
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com