Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Kerr Black Hole in Einstein--Æther Gravity (2312.06891v2)

Published 11 Dec 2023 in gr-qc

Abstract: While non-rotating black-hole solutions are well known in Einstein--\ae{}ther gravity, no axisymmetric solutions endowed with Killing horizons have been so far found outside of the slowly rotating limit. Here we show that the Kerr spacetime is also an exact vacuum solution of Einstein--\ae{}ther gravity in a phenomenologically viable corner of the parameter space; the corresponding \ae{}ther flow is characterised by a vanishing expansion. Such solution displays all the characteristic features of the Kerr metric (inner and outer horizons, ergoregion, etc.) with the remarkable exception of the causality-violating region in proximity of the ring singularity. However, due to the associated \ae{}ther flow, it is endowed with a special surface, inside the Killing horizon, which exhibits many features normally related to the universal horizon of the non-rotating solutions -- to which it tends in the limit of zero angular momentum. Hence, these Kerr black holes are very good mimickers of their general relativity counterparts while sporting important differences and specific structures. As such, they appear particularly well-suited candidates for future phenomenological studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. P. Horava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79, 084008 (2009), arXiv:0901.3775 .
  2. D. Blas, O. Pujolas, and S. Sibiryakov, Consistent extension of Horava gravity, Phys. Rev. Lett. 104, 181302 (2010), arXiv:0909.3525 .
  3. S. Liberati, Tests of Lorentz invariance: a 2013 update, Class. Quantum Gravity 30, 133001 (2013), arXiv:1304.5795 .
  4. B. Withers, Einstein–æther as a quantum effective field theory, Class. Quantum Gravity 26, 225009 (2009), arXiv:0905.2446 [gr-qc] .
  5. T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64, 024028 (2001a), arXiv:gr-qc/0007031 .
  6. T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64, 024028 (2001b), arXiv:gr-qc/0007031 .
  7. T. Jacobson, Undoing the Twist: The Hořava Limit of Einstein-æther, Phys. Rev. D 89, 081501 (2014), arXiv:1310.5115 .
  8. B. P. Abbott et al. (LIGO Scientific and Virgo collaborations), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 .
  9. C. Eling and T. Jacobson, Black Holes in Einstein-Aether Theory, Class. Quantum Gravity 23, 5643 (2006), arXiv:gr-qc/0604088 .
  10. E. Barausse, T. Jacobson, and T. P. Sotiriou, Black holes in Einstein-aether and Horava-Lifshitz gravity, Phys. Rev. D 83, 124043 (2011), arXiv:1104.2889 .
  11. D. Blas and S. Sibiryakov, Horava gravity versus thermodynamics: The black hole case, Phys. Rev. D 84, 124043 (2011), arXiv:1110.2195 .
  12. J. Bhattacharyya, M. Colombo, and T. P. Sotiriou, Causality and black holes in spacetimes with a preferred foliation, Class. Quantum Gravity 33, 235003 (2016), arXiv:1509.01558 .
  13. P. Berglund, J. Bhattacharyya, and D. Mattingly, Mechanics of universal horizons, Phys. Rev. D 85, 124019 (2012), arXiv:1202.4497 .
  14. E. Barausse, T. P. Sotiriou, and I. Vega, Slowly Rotating Black Holes in Einstein-Æther Theory, Phys. Rev. D 93, 044044 (2016), arXiv:1512.05894 .
  15. T. Jacobson and D. Mattingly, Einstein-Aether Waves, Phys. Rev. D 70, 024003 (2004), arXiv:gr-qc/0402005 .
  16. N. Franchini, M. Herrero-Valea, and E. Barausse, The Relation between General Relativity and a Class of Hořava Gravity Theories, Phys. Rev. D 103, 084012 (2021), arXiv:2103.00929 .
  17. N. Afshordi, Cuscuton and low energy limit of Horava-Lifshitz gravity, Phys. Rev. D 80, 081502 (2009), arxiv:0907.5201 .
  18. R. M. Wald, General Relativity (Chicago University Press, Chicago, USA, 1984).
  19. M. Heusler, Black Hole Uniqueness Theorems, Cambridge Lecture Notes in Physics (Cambridge University Press, Cambridge, 1996).
  20. N. Franchini, M. Saravani, and T. P. Sotiriou, Black hole horizons at the extremal limit in Lorentz-violating gravity, Phys. Rev. D 96, 104044 (2017), arXiv:1707.09283 [gr-qc] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.