Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding and Leveraging the Learning Phases of Neural Networks (2312.06887v2)

Published 11 Dec 2023 in cs.LG and cs.AI

Abstract: The learning dynamics of deep neural networks are not well understood. The information bottleneck (IB) theory proclaimed separate fitting and compression phases. But they have since been heavily debated. We comprehensively analyze the learning dynamics by investigating a layer's reconstruction ability of the input and prediction performance based on the evolution of parameters during training. We empirically show the existence of three phases using common datasets and architectures such as ResNet and VGG: (i) near constant reconstruction loss, (ii) decrease, and (iii) increase. We also derive an empirically grounded data model and prove the existence of phases for single-layer networks. Technically, our approach leverages classical complexity analysis. It differs from IB by relying on measuring reconstruction loss rather than information theoretic measures to relate information of intermediate layers and inputs. Our work implies a new best practice for transfer learning: We show empirically that the pre-training of a classifier should stop well before its performance is optimal.

Summary

We haven't generated a summary for this paper yet.